A032798 Numbers such that n(n+1)(n+2)...(n+12) / (n+(n+1)+(n+2)+...+(n+12)) is a multiple of n.
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84
Offset: 1
Keywords
Formula
From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = a(n-1) + a(n-11) - a(n-12) for n > 12.
G.f.: x*(x^11 + x^10 + x^9 + x^8 + x^7 + 2*x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)/(x^12 - x^11 - x + 1). (End)
Comments