cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032858 Numbers whose base-3 representation Sum_{i=0..m} d(i)*3^i has d(m) > d(m-1) < d(m-2) > ...

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 10, 11, 19, 20, 23, 30, 33, 34, 57, 60, 61, 69, 70, 91, 92, 100, 101, 104, 172, 173, 181, 182, 185, 208, 209, 212, 273, 276, 277, 300, 303, 304, 312, 313, 516, 519, 520, 543, 546, 547, 555, 556, 624, 627, 628, 636, 637
Offset: 1

Views

Author

Keywords

Comments

Every other base-3 digit must be strictly less than its neighbors. - M. F. Hasler, Oct 05 2018
The terms can be generated in the following way: if A(n) are the terms with n digits in base 3, the terms with n+2 digits are obtained by prefixing them with '10' and with '20', and prefixing '21' to those starting with a digit '2'. It is easy to prove that #A(n) = A000045(n+2), since from the above we have #A(n+2) = 2*#A(n) + #A(n-1) = #A(n) + #A(n+1). (The #A(n-1) numbers starting with '2' are #A(n-2) numbers prefixed with '20' and #A(n-3) prefixed with '21'.) - M. F. Hasler, Oct 05 2018

Examples

			The base-3 representation of the initial terms is 0, 1, 2, 10, 20, 21, 101, 102, 201, 202, 212, 1010, 1020, 1021, 2010, 2020, 2021, 2120, 2121, 10101, 10102, ...
		

Crossrefs

Cf. A032859 .. A032865 for base-4 .. 10 variants.
Cf. A000975 (or A056830 in binary) for the base-2 analog.
Cf. A306105 for these terms written in base 3.

Programs

  • Mathematica
    sdQ[n_]:=Module[{s=Sign[Differences[IntegerDigits[n, 3]]]}, s==PadRight[{}, Length[s], {-1, 1}]]; Select[Range[0, 700], sdQ] (* Vincenzo Librandi, Oct 06 2018 *)
  • PARI
    is(n,b=3)=!for(i=2,#n=digits(n,b),(n[i-1]-n[i])*(-1)^i>0||return) \\ M. F. Hasler, Oct 05 2018

Formula

a(A000071(n+3)) = floor(3^(n+1)/8) = A033113(n). - M. F. Hasler, Oct 05 2018

Extensions

Definition edited, cross-references and a(1) = 0 inserted by M. F. Hasler, Oct 05 2018