A033148 Number of rotationally symmetric solutions for queens on n X n board.
1, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 64, 128, 0, 0, 480, 704, 0, 0, 3328, 3264, 0, 0, 32896, 43776, 0, 0, 406784, 667904, 0, 0, 5845504, 8650752, 0, 0, 77184000, 101492736, 0, 0, 1261588480, 1795233792, 0, 0, 21517426688, 35028172800, 0, 0, 406875119616, 652044443648, 0, 0, 8613581094912, 12530550128640, 0, 0, 194409626533888, 291826098503680, 0, 0
Offset: 1
References
- W. Ahrens, Mathematische Unterhaltungen und Spiele, 2nd edition, volume 1, Teubner, 1910, pages 249-258.
- Maurice Kraitchik, Le problème des reines, Bruxelles: L'Échiquier, 1926, page 18.
Links
- Tricia M. Brown, Kaleidoscopes, Chessboards, and Symmetry, Journal of Humanistic Mathematics, Volume 6 Issue 1 ( January 2016), pages 110-126.
- P. Capstick and K. McCann, The problem of the n queens, apparently unpublished, no date (circa 1990?) [Scanned copy]
- Gheorghe Coserea, Solutions for n=20.
- Gheorghe Coserea, Solutions for n=24.
- Gheorghe Coserea, MiniZinc model for generating solutions.
- YuhPyng Shieh, Cyclic Complete Mappings Counting Problems
- M. Szabo, Non-attacking Queens Problem Page
Extensions
More terms from Jieh Hsiang and YuhPyng Shieh (arping(AT)turing.csie.ntu.edu.tw), May 20 2002
Comments