A033179 Numbers k such that exactly one multiset of k positive integers has equal sum and product.
2, 3, 4, 6, 24, 114, 174, 444
Offset: 1
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 174, p. 54, Ellipses, Paris 2008.
- R. K. Guy, 'Unsolved Problems in Number Theory' (Section D24).
Links
- Michael W. Ecker, When Does a Sum of Positive Integers Equal Their Product? Mathematics Magazine 75(1), 2002, pp. 41-47.
- Hlib Husarov and Eberhard Mayerhofer, An algorithm for the Product-Sum Equality, arXiv:2508.09647 [math.NT], 2025. See p. 2.
- Piotr Miska and Maciej Ulas, On the Diophantine equation sigma_2(Xn)=sigma_n(Xn), arXiv:2203.03942 [math.NT], 2022.
- Michael A. Nyblom, Sophie Germain Primes and the Exceptional Values of the Equal-Sum-And-Product Problem, Fib. Q. 50(1), 2012, 58-61.
- Burkard Polster, What's the next freak identity? A new deep connection with Sophie Germain primes, YouTube Mathologer video, 2024.
Crossrefs
Cf. A033178.
Extensions
Revised by Don Reble, Jun 11 2005
Edited by Max Alekseyev, Nov 13 2013
Comments