cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033193 Binomial transform of A033192.

Original entry on oeis.org

1, 2, 6, 19, 62, 207, 704, 2430, 8486, 29903, 106098, 378391, 1354700, 4863834, 17499302, 63055947, 227465414, 821215295, 2966571096, 10721076118, 38757594758, 140143505031, 506827217210, 1833150646599, 6630915738212, 23986989146162, 86775559512774, 313930265564035
Offset: 0

Views

Author

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 3, s(2n) = 3. - Herbert Kociemba, Jun 16 2004

Crossrefs

Cf. A033192.

Programs

  • Mathematica
    CoefficientList[Series[(x^4 - 7 x^3 + 11 x^2 - 6 x + 1)/((1 - 3 x + x^2) (1 - 5 x + 5 x^2)), {x, 0, 23}], x] (* Michael De Vlieger, Feb 12 2022 *)
  • PARI
    Vec((x^4-7*x^3+11*x^2-6*x+1)/((1-3*x+x^2)*(1-5*x+5*x^2)) + O(x^24)) \\ Stefano Spezia, Aug 22 2025

Formula

G.f.: (x^4-7*x^3+11*x^2-6*x+1)/((1-3*x+x^2)*(1-5*x+5*x^2)).
a(n) = (1/5)*Sum_{r=1..9} sin(3*r*Pi/10)^2*(2*cos(r*Pi/10))^(2*n), n >= 1. - Herbert Kociemba, Jun 16 2004
For n > 0, a(n) = (phi^(2*n+1) + 1/phi^(2*n+1))/(2*sqrt(5)) + 5^(n/2-1)*(phi^(n+2) + 1/phi^(n+2))/2, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 22 2025