cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033221 Primes of form x^2+31*y^2.

Original entry on oeis.org

31, 47, 67, 131, 149, 173, 227, 283, 293, 349, 379, 431, 521, 577, 607, 617, 653, 811, 839, 853, 857, 919, 937, 971, 1031, 1063, 1117, 1187, 1213, 1237, 1259, 1303, 1327, 1451, 1493, 1523, 1559, 1583, 1619, 1663, 1721, 1723, 1741, 1879, 1931, 1973, 1993, 2003, 2017, 2153, 2273, 2333, 2341, 2521, 2531, 2539, 2543, 2609, 2707, 2711, 2713, 2767, 2797
Offset: 1

Views

Author

Keywords

Comments

Also primes of the form x^2+xy+8y^2. - N. J. A. Sloane, Jun 02 2014
Also primes of the form x^2-xy+8y^2 with x and y nonnegative. - T. D. Noe, May 07 2005
Primes p such that the polynomial X^3 + X + 1 splits mod p (see Williams and Hudson link). - Robert Israel, Jun 01 2020

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

Crossrefs

Primes in A243176.

Programs

  • Maple
    N:= 10000: # for terms <= N
    S:= select(isprime,{31,seq(seq(x^2+31*y^2, y=1..floor(sqrt((N-x^2)/31))),
      x=1..floor(sqrt(N)))}):
    sort(convert(S,list)); # Robert Israel, Jun 01 2020
  • Mathematica
    QuadPrimes2[1, 0, 31, 10000] (* see A106856 *)