A033265 Number of i such that d(i) >= d(i-1), where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
0, 1, 1, 2, 1, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 4, 3, 3, 3, 3, 2, 3, 3, 4, 3, 3, 3, 4, 3, 4, 4, 5, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 4, 3, 4, 4, 5, 4, 4, 4, 4, 3, 4, 4, 5, 4, 4, 4, 5, 4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 5, 5, 4, 4, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 3, 4, 4, 5, 4, 4
Offset: 1
Examples
The base-2 representation of n=4 is 100 with d(0)=0, d(1)=0, d(2)=1. There are two rise-or-equal, one from d(0) to d(1) and one from d(1) to d(2), so a(4)=2. - _R. J. Mathar_, Oct 16 2015
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Ralf Stephan, Some divide-and-conquer sequences ...
- Ralf Stephan, Table of generating functions
- Index entries for sequences related to binary expansion of n
Programs
-
Maple
A033265 := proc(n) a := 0 ; dgs := convert(n,base,2); for i from 2 to nops(dgs) do if op(i,dgs)>=op(i-1,dgs) then a := a+1 ; end if; end do: a ; end proc: # R. J. Mathar, Oct 16 2015
-
PARI
A033265(n) = { my(i=0); while(n>1, if((n%4)!=1, i++); n >>= 1); (i); }; \\ Antti Karttunen, Aug 06 2023
Formula
From Ralf Stephan, Oct 05 2003: (Start)
a(0) = 0, a(2n) = a(n) + 1, a(2n+1) = a(n) + [n odd].
G.f.: 1/(1-x) * Sum_{k>=0} (t^2 + t^3 + t^4)/((1+t)*(1+t^2)), t=x^2^k. (End)
Extensions
Sign in Name corrected by R. J. Mathar, Oct 16 2015