A033448 Initial prime in set of 4 consecutive primes in arithmetic progression with common difference 18.
74453, 76543, 132893, 182243, 202823, 297403, 358793, 485923, 655453, 735883, 759113, 780613, 797833, 849143, 1260383, 1306033, 1442173, 1531093, 1534153, 1586953, 1691033, 1717063, 1877243, 1945763, 1973633, 2035513, 2067083, 2216803, 2266993, 2542513, 2556803, 2565203, 2805773
Offset: 1
Keywords
Examples
{74453, 74471, 74489, 74507} is the first such set of 4 consecutive primes with common difference 18, so a(1) = 74453.
Links
Crossrefs
Programs
-
Mathematica
A033448 = Reap[For[p = 2, p < 2100000, p = NextPrime[p], p2 = NextPrime[p]; If[p2 - p == 18, p3 = NextPrime[p2]; If[p3 - p2 == 18, p4 = NextPrime[p3]; If[p4 - p3 == 18, Sow[p]]]]]][[2, 1]] (* Jean-François Alcover, Jun 28 2012 *) Transpose[Select[Partition[Prime[Range[160000]],4,1],Union[ Differences[ #]] == {18}&]][[1]] (* Harvey P. Dale, Jun 17 2014 *)
-
PARI
A033448(n,show_all=1,g=18,p=2,o,c)={forprime(q=p+1,,if(p+g!=p=q,next, q!=o+2*g, c=3, c++>4, print1(o-g","); n--||break); o=q-g);o-g} \\ Can be used as nxt(p)=A033448(1,,,p+1), e.g.: {p=0;vector(20,i,p=nxt(p))} or {p=0;for(i=1,1e4,write("b.txt",i" "nxt(p)))}. - M. F. Hasler, Oct 26 2018
Extensions
More terms from Labos Elemer, Jan 31 2000
Definition clarified by Harvey P. Dale, Jun 17 2014
Example reflecting final digits given by Rick L. Shepherd, Mar 27 2023
Comments