cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033466 Denominators of the first differences of 1/(n^2 + 1).

Original entry on oeis.org

2, 10, 10, 170, 442, 962, 1850, 650, 5330, 8282, 12322, 17690, 986, 33490, 44522, 58082, 74530, 18850, 117650, 145162, 177242, 214370, 51410, 305810, 361202, 423802, 494210, 114610, 660970, 758642
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033465 (numerators).

Programs

  • Magma
    A033466:= func< n | Denominator((2*n+1)/((n^2+1)*((n+1)^2+1))) >;
    [A033466(n): n in [0..40]]; // G. C. Greubel, Oct 14 2024
    
  • Mathematica
    Table[Denominator[(1+2*n)/((1+n^2)*(1+(n+1)^2))], {n,0,40}] (* G. C. Greubel, Oct 14 2024 *)
  • SageMath
    def A033466(n): return denominator((2*n+1)/((n^2+1)*((n+1)^2+1)))
    [A033466(n) for n in range(41)] # G. C. Greubel, Oct 14 2024

Formula

For all n not in A016873, a(n) = n^4 + 2n^3 + 3n^2 + 2n + 2, else A099024((n-2)/5). - Ralf Stephan, Sep 25 2004
a(n) = denominator of (2*n+1)/((n^2+1)*((n+1)^2+1)). - G. C. Greubel, Oct 14 2024