A033477 Products p^3 or p^2*q, where {p,q} are consecutive primes.
8, 12, 18, 27, 45, 75, 125, 175, 245, 343, 539, 847, 1331, 1573, 1859, 2197, 2873, 3757, 4913, 5491, 6137, 6859, 8303, 10051, 12167, 15341, 19343, 24389, 26071, 27869, 29791, 35557, 42439, 50653, 56129, 62197, 68921, 72283, 75809, 79507, 86903, 94987, 103823
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
Maple
R:= NULL: p:= 2: for n from 1 to 30 do q:= nextprime(p); R:= R, p^3, p^2*q, p*q^2; p:= q; od: R; # Robert Israel, Jun 26 2020
-
Mathematica
nn=50;With[{prs=Prime[Range[nn]]},Take[Union[Flatten[{prs^3,{#[[1]]^2 #[[2]],#[[2]]^2 #[[1]]}&/@Partition[prs,2,1]}]],nn]] (* Harvey P. Dale, Dec 28 2013 *)
Formula
From Robert Israel, Jun 26 2020: (Start)
a(3k) = A030078(k+1).
a(3k+1) = A251720(k+1).
a(3k+2) = a(3k+1)^2/a(3k). (End)
Extensions
Corrected and extended by Harvey P. Dale, Dec 28 2013