A033480 3x + 1 sequence beginning at 15.
15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1
Offset: 0
Examples
15 is odd, so the next term is 3 * 15 + 1 = 46. 46 is even, so the next term is 46/2 = 23.
Links
Programs
-
Mathematica
NestList[If[EvenQ[#], #/2, 3# + 1] &, 15, 100] (* Harvey P. Dale, Dec 27 2011 *)
-
PARI
a(n)=my(k=15); for(i=1,n,k=if(k%2,k/2,3*k+1)); k \\ Charles R Greathouse IV, May 04 2015
-
PARI
Vec((15 + 46*x + 23*x^2 + 55*x^3 - 11*x^4 + 83*x^5 - 17*x^6 + 125*x^7 - 26*x^8 - 13*x^9 - 140*x^10 - 70*x^11 - 35*x^12 - 4*x^13 - 2*x^14 - x^15 - 14*x^16 - 7*x^17) / ((1 - x)*(1 + x + x^2)) + O(x^80)) \\ Colin Barker, Oct 04 2019
Formula
a(0) = 15, a(n) = a(n - 1)/2 if a(n - 1) is even or 3a(n - 1) + 1 if a(n - 1) is odd.
From Colin Barker, Oct 04 2019: (Start)
G.f.: (15 + 46*x + 23*x^2 + 55*x^3 - 11*x^4 + 83*x^5 - 17*x^6 + 125*x^7 - 26*x^8 - 13*x^9 - 140*x^10 - 70*x^11 - 35*x^12 - 4*x^13 - 2*x^14 - x^15 - 14*x^16 - 7*x^17) / ((1 - x)*(1 + x + x^2)).
a(n) = a(n-3) for n>17.
(End)