A033508 Number of matchings in graph P_{5} X P_{n}.
1, 8, 228, 5096, 120465, 2810694, 65805403, 1539222016, 36012826776, 842518533590, 19711134149599, 461148537211748, 10788744980331535, 252406631116215534, 5905146419664967132, 138153075553825008696
Offset: 0
Keywords
Links
- F. Cazals, Monomer-Dimer Tilings, 1997.
- Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research report, No 12, 1996, Department of Math., Umea University, Sweden.
- Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.
Crossrefs
Column 5 of triangle A210662.
Programs
-
Maple
# The following g.f. is for the sequence a(0)=1, a(1)=8, a(2)=228, etc. Gf:= (1-6*x-113*x^2+88*x^3+1794*x^4-1994*x^5-6956*x^6+7532*x^7+ 11175*x^8-9448*x^9-9255*x^10+4700*x^11+3820*x^12-870*x^13-654*x^14+ 68*x^15+45*x^16-2*x^17-x^18)/(1-14*x-229*x^2+16*x^3+4757*x^4-898*x^5- 35106*x^6+26564*x^7+74665*x^8-60482*x^9-73623*x^10+50158*x^11+ 38553*x^12-17604*x^13-10366*x^14+2538*x^15+1281*x^16-140*x^17-65*x^18+ 2*x^19+x^20): expr:=convert(series(Gf,x,21),polynom): seq(coeff(expr,x,j),j=0..20); # Sergey Perepechko, Apr 26 2013
Formula
For g.f. see Maple program. - Sergey Perepechko, Apr 26 2013
Comments