cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033508 Number of matchings in graph P_{5} X P_{n}.

Original entry on oeis.org

1, 8, 228, 5096, 120465, 2810694, 65805403, 1539222016, 36012826776, 842518533590, 19711134149599, 461148537211748, 10788744980331535, 252406631116215534, 5905146419664967132, 138153075553825008696
Offset: 0

Views

Author

Keywords

Comments

These are the row sums of the following triangle of the matchings of P_5 X P_n with k>=0 monomers (A003775 appears in the first column):
1;
0, 3, 0, 4, 0, 1;
8, 0, 56, 0, 94, 0, 56, 0, 13, 0, 1;
0, 106, 0, 757, 0, 1670, 0, 1597, 0, 758, 0, 185, 0, 22, 0, 1;
95, 0, 2111, 0, 12181, 0, 29580, 0, 36771, 0, 25835, 0, 10769, 0, 2696, 0, 395, 0, 31, 0, 1;
0, 2180, 0, 35104, 0, 192672, 0, 510752, 0, 762180, 0, 695848, 0, 407620, 0, 157000, 0, 39979, 0, 6632, 0, 686, 0, 40, 0, 1;
1183, 0, 52614, 0, 611633, 0, 3146447, 0, 8803727, 0, 14957414, 0, 16492039, 0, 12307901, 0, 6380454, 0, 2329148, 0, 600254, 0, 108186, 0, 13295, 0, 1058, 0, 49, 0, 1;
0, 37924, 0, 1054776, 0, 10405842, 0, 51732687, 0, 151233778, 0, 283790459, 0, 361377070, 0, 324069497, 0, 209807278, 0, 99625091, 0, 34985010, 0, 9096697, 0, 1740018, 0, 240905, 0, 23414, 0, 1511, 0, 58, 0, 1;
- R. J. Mathar, May 06 2016

Crossrefs

Column 5 of triangle A210662.

Programs

  • Maple
    # The following g.f. is for the sequence a(0)=1, a(1)=8, a(2)=228, etc.
    Gf:= (1-6*x-113*x^2+88*x^3+1794*x^4-1994*x^5-6956*x^6+7532*x^7+
    11175*x^8-9448*x^9-9255*x^10+4700*x^11+3820*x^12-870*x^13-654*x^14+
    68*x^15+45*x^16-2*x^17-x^18)/(1-14*x-229*x^2+16*x^3+4757*x^4-898*x^5-
    35106*x^6+26564*x^7+74665*x^8-60482*x^9-73623*x^10+50158*x^11+
    38553*x^12-17604*x^13-10366*x^14+2538*x^15+1281*x^16-140*x^17-65*x^18+
    2*x^19+x^20):
    expr:=convert(series(Gf,x,21),polynom):
    seq(coeff(expr,x,j),j=0..20);
    # Sergey Perepechko, Apr 26 2013

Formula

For g.f. see Maple program. - Sergey Perepechko, Apr 26 2013