A018238
Add 1 to leading digit and put in front.
Original entry on oeis.org
1, 21, 3121, 41213121, 5121312141213121, 61213121412131215121312141213121, 7121312141213121512131214121312161213121412131215121312141213121
Offset: 1
Original entry on oeis.org
1, 121, 1213121, 121312141213121, 1213121412131215121312141213121, 121312141213121512131214121312161213121412131215121312141213121, 1213121412131215121312141213121612131214121312151213121412131217121312141213121512131214121312161213121412131215121312141213121
Offset: 1
- J. Cooper and D. Rorabaugh, Bounds on Zimin Word Avoidance, arXiv:1409.3080 [math.CO], 2014; Congressus Numerantium, 222 (2014), 87-95.
- L. J. Cummings and M. Mays, A one-sided Zimin construction, Electron. J. Combin. 8 (2001), #R27.
- A. I. Zimin, Blocking sets of terms, Math. USSR Sbornik, 47 (1984), No. 2, 353-364.
See
A001511 for another representation of this sequence of digits.
-
a = {1}; Do[w = IntegerDigits@ a[[n - 1]]; AppendTo[a, FromDigits@ Join[w, IntegerDigits@ n, w]], {n, 2, 7}]; a (* Michael De Vlieger, Sep 26 2015 *)
"Palindromes" replaced with "Numbers" in sequence name by
Danny Rorabaugh, Sep 26 2015
A348466
a(0)=1; for n >= 0, a(n+1) is the concatenation of a(n) and a(n)-1.
Original entry on oeis.org
1, 10, 109, 109108, 109108109107, 109108109107109108109106, 109108109107109108109106109108109107109108109105, 109108109107109108109106109108109107109108109105109108109107109108109106109108109107109108109104
Offset: 0
-
Nest[Append[#1, #2*10^IntegerLength[#3] + #3] & @@ {#, #[[-1]], #[[-1]] - 1} &, {1, 10}, 6] (* Michael De Vlieger, Oct 20 2021 *)
Showing 1-3 of 3 results.
Comments