cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033690 Theta series of A2[hole]^4.

Original entry on oeis.org

1, 4, 14, 28, 57, 84, 148, 196, 312, 364, 546, 624, 910, 988, 1352, 1456, 1974, 2072, 2710, 2800, 3705, 3724, 4816, 4788, 6188, 6076, 7658, 7644, 9620, 9352, 11536, 11284, 14183, 13468, 16542, 15996, 19864, 18928, 22820, 21904, 26880, 25284
Offset: 0

Views

Author

Keywords

Examples

			q^4 + 4*q^7 + 14*q^10 + 28*q^13 + 57*q^16 + 84*q^19 + 148*q^22 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111, Eq (63)^4.

Crossrefs

Cf. A033685.

Programs

  • Mathematica
    s = (QPochhammer[q^3]^3/QPochhammer[q])^4 + O[q]^45; CoefficientList[s, q] (* Jean-François Alcover, Nov 04 2015 *)
  • PARI
    {a(n) = local(A); if(n<0, 0, A = x*O(x^n); polcoeff( (eta(x^3 +A)^3 / eta(x +A) )^4, n))} /* Michael Somos, Aug 22 2007 */

Formula

a(n) = A033685^4.
Expansion of q^(-4/3) * (eta(q^3)^3 / eta(q))^4 in powers of q. - Michael Somos, Aug 22 2007
Expansion of c(q)^4 / (81 * q^(4/3)) in powers of q where c() is a cubic AGM function. - Michael Somos, Aug 22 2007
Euler transform of period 3 sequence [ 4, 4, -8, ...]. - Michael Somos, Aug 22 2007
A092342(n) = A000731(n) + 81*a(n-1). - Michael Somos, Aug 22 2007