cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033712 theta3(z) * theta3(2*z) * theta3(3*z) * theta3(6*z).

Original entry on oeis.org

1, 2, 2, 6, 6, 4, 14, 8, 6, 26, 12, 16, 42, 12, 16, 44, 6, 20, 50, 16, 36, 56, 24, 16, 42, 30, 28, 78, 48, 36, 84, 40, 6, 80, 36, 48, 150, 44, 40, 100, 36, 36, 112, 48, 72, 148, 48, 48, 42, 50, 62, 124, 84, 52, 158, 64, 48, 144, 60, 64, 252, 60, 64, 200, 6, 88, 168, 64, 108
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 2*q^2 + 6*q^3 + 6*q^4 + 4*q^5 + 14*q^6 + 8*q^7 + 6*q^8 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102, eq. 9.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 3, p. 225.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(24), 2), 69); A[1] + 2*A[2] + 2*A[3] + 6*A[4] + 6*A[5] + 4*A[6] + 14*A[7] + 6*A[8]; /* Michael Somos, Apr 19 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] EllipticTheta[ 3, 0, q^3] EllipticTheta[ 3, 0, q^6], {q, 0, n}]; (* Michael Somos, Apr 19 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sum( k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( A * subst( A + x * O(x^(n\2)), x ,x^2) * subst( A + x * O(x^(n\3)), x, x^3) * subst( A + x * O(x^(n\6)), x, x^6), n))}; /* Michael Somos, May 30 2005 */
    
  • PARI
    {a(n) = my(G); if( n<0, 0, G = [1, 0, 0, 0; 0, 2, 0, 0; 0, 0, 3, 0; 0, 0, 0, 6 ]; polcoeff( 1 + 2 * x * Ser( qfrep( G, n)), n))}; /* Michael Somos, Apr 19 2015 */
    

Formula

Number of solutions to a^2 + 2*b^2 + 3*c^2 + 6*d^2 = n in integers.
Expansion of phi(q) * phi(q^2) * phi(q^3) * phi(q^6) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Apr 19 2015
Expansion of (eta(q^2) * eta(q^4) * eta(q^6) * eta(q^12))^3 / (eta(q) * eta(q^3) * eta(q^8) * eta(q^24))^2 in powers of q.
Euler transform of period 24 sequence [2, -1, 4, -4, 2, -2, 2, -2, 4, -1, 2, -8, 2, -1, 4, -2, 2, -2, 2, -4, 4, -1, 2, -4, ...]. - Michael Somos, May 30 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 24 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Apr 19 2015
a(2*n) = A282544(n). a(4*n) = A125510(n).