cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033728 Product theta3(q^d); d | 16.

Original entry on oeis.org

1, 2, 2, 4, 4, 4, 8, 8, 8, 10, 12, 12, 16, 20, 16, 24, 26, 24, 30, 28, 32, 40, 40, 40, 48, 50, 52, 64, 64, 60, 80, 80, 72, 88, 88, 88, 100, 100, 88, 104, 112, 112, 120, 124, 112, 124, 144, 112, 144, 146, 134, 168, 160, 140, 160, 184, 160, 184, 188, 148, 192, 220, 160
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 4*x^4 + 4*x^5 + 8*x^6 + 8*x^7 + 8*x^8 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p 102 eq 9.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^2] EllipticTheta[ 3, 0, x^4] EllipticTheta[ 3, 0, x^8] EllipticTheta[ 3, 0, x^16], {x, 0, n}]; (* Michael Somos, Feb 22 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=0, 4, sum(i=1, sqrtint( n\(2^k)), 2 * x^(2^k * i^2), 1 + x*O(x^n))), n))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(X)^-2 * eta(x^2 + A)^3 * eta(x^4 + A) * eta(x^8 + A) * eta(x^16 + A) * eta(x^32 + A)^3 * eta(x^64 + A)^-2, n))};

Formula

Expansion of eta(q^2)^3 * eta(q^4) * eta(q^8) * eta(q^16) * eta(q^32)^3 / (eta(q)^2 * eta(q^64)^2) in powers of q.