cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A033782 Product t2(q^d); d | 23, where t2 = theta2(q)/(2*q^(1/4)).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Also the number of positive odd solutions to equation x^2 + 23y^2 = 8(n + 3). - Seiichi Manyama, May 21 2017

Crossrefs

Formula

Expansion of q^(-3) * (eta(q^2) * eta(q^46))^2 / (eta(q) * eta(q^23)) in powers of q. - Seiichi Manyama, May 21 2017

Extensions

More terms from Seiichi Manyama, May 21 2017

A033806 Product t2(q^d); d | 47, where t2 = theta2(q)/(2*q^(1/4)).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Also the number of positive odd solutions to equation x^2 + 47y^2 = 8(n + 6). - Seiichi Manyama, May 27 2017

Crossrefs

Formula

Expansion of q^(-6) * (eta(q^2) * eta(q^94))^2 / (eta(q) * eta(q^47)) in powers of q. - Seiichi Manyama, May 27 2017

Extensions

More terms from Seiichi Manyama, May 27 2017

A287619 Number of positive odd solutions to equation x^2 + 39y^2 = 8*(n + 5).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 0

Views

Author

Seiichi Manyama, May 28 2017

Keywords

Crossrefs

Number of positive odd solutions to equation x^2 + (8*k - 1)*y^2 = 8*(n + k): A033782 (k=3), A033790 (k=4), this sequence (k=5), A033806 (k=6).

Formula

Expansion of q^(-5) * (eta(q^2) * eta(q^78))^2 / (eta(q) * eta(q^39)) in powers of q.
Showing 1-3 of 3 results.