cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033833 Highly factorable numbers: numbers with a record number of proper factorizations.

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 36, 48, 72, 96, 120, 144, 192, 216, 240, 288, 360, 432, 480, 576, 720, 960, 1080, 1152, 1440, 2160, 2880, 4320, 5040, 5760, 7200, 8640, 10080, 11520, 12960, 14400, 15120, 17280, 20160, 25920, 28800, 30240, 34560
Offset: 1

Views

Author

Keywords

Comments

First differs from A045783 and A330972 in lacking 60.
Indices of records in A028422 or A001055.

Examples

			From _Gus Wiseman_, Jan 13 2020: (Start)
Factorizations of the initial terms:
  ()  (4)    (8)      (12)     (16)       (24)       (36)       (48)
      (2*2)  (2*4)    (2*6)    (2*8)      (3*8)      (4*9)      (6*8)
             (2*2*2)  (3*4)    (4*4)      (4*6)      (6*6)      (2*24)
                      (2*2*3)  (2*2*4)    (2*12)     (2*18)     (3*16)
                               (2*2*2*2)  (2*2*6)    (3*12)     (4*12)
                                          (2*3*4)    (2*2*9)    (2*3*8)
                                          (2*2*2*3)  (2*3*6)    (2*4*6)
                                                     (3*3*4)    (3*4*4)
                                                     (2*2*3*3)  (2*2*12)
                                                                (2*2*2*6)
                                                                (2*2*3*4)
                                                                (2*2*2*2*3)
(End)
		

Crossrefs

All terms belong to A025487 as well as to A330972.
The corresponding records are A272691.
The strict version is A331200.
Factorizations are A001055, with image A045782 and complement A330976.

Programs

  • Mathematica
    nn=100;
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    qv=Table[Length[facs[n]],{n,nn}];
    Table[Position[qv,i][[1,1]],{i,qv//.{foe___,x_,y_,afe___}/;x>=y:>{foe,x,afe}}] (* Gus Wiseman, Jan 13 2020 *)

Formula

A001055(a(n)) = A272691(n). - Gus Wiseman, Jan 13 2020