cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A272691 Number of factorizations of the highly factorable numbers A033833.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 12, 16, 19, 21, 29, 30, 31, 38, 47, 52, 57, 64, 77, 98, 105, 109, 118, 171, 212, 289, 382, 392, 467, 484, 662, 719, 737, 783, 843, 907, 1097, 1261, 1386, 1397, 1713, 1768, 2116, 2179, 2343, 3079, 3444, 3681, 3930, 5288, 5413, 5447
Offset: 1

Views

Author

N. J. A. Sloane, Jun 02 2016, following a suggestion from George Beck

Keywords

Comments

These are defined as record numbers of factorizations (A001055). - Gus Wiseman, Jan 13 2020

Examples

			From _Gus Wiseman_, Jan 13 2020: (Start)
The a(1) = 1 through a(8) = 12 factorizations of highly factorable numbers:
  ()  (4)    (8)      (12)     (16)       (24)       (36)       (48)
      (2*2)  (2*4)    (2*6)    (2*8)      (3*8)      (4*9)      (6*8)
             (2*2*2)  (3*4)    (4*4)      (4*6)      (6*6)      (2*24)
                      (2*2*3)  (2*2*4)    (2*12)     (2*18)     (3*16)
                               (2*2*2*2)  (2*2*6)    (3*12)     (4*12)
                                          (2*3*4)    (2*2*9)    (2*3*8)
                                          (2*2*2*3)  (2*3*6)    (2*4*6)
                                                     (3*3*4)    (3*4*4)
                                                     (2*2*3*3)  (2*2*12)
                                                                (2*2*2*6)
                                                                (2*2*3*4)
                                                                (2*2*2*2*3)
(End)
		

Crossrefs

The strict version is A331232.
Factorizations are A001055, with image A045782 and complement A330976.
Highly factorable numbers are A033833, with strict version A331200.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[facs[n]],{n,100}]//.{foe___,x_,y_,afe___}/;x>=y:>{foe,x,afe} (* Gus Wiseman, Jan 13 2020 *)

Formula

a(n) = A001055(A033833(n)).
a(n) = A033834(n) + 1. - Amiram Eldar, Jun 07 2019

A330685 Primorial deflation of highly factorable numbers: a(n) is the unique integer x such that A108951(x) = A033833(n).

Original entry on oeis.org

1, 4, 8, 6, 16, 12, 9, 24, 18, 48, 20, 36, 96, 27, 40, 72, 30, 54, 80, 144, 60, 160, 45, 288, 120, 90, 240, 180, 84, 480, 200, 360, 168, 960, 270, 400, 126, 720, 336, 540, 800, 252, 1440, 672, 280, 1080, 504, 1344, 378, 560, 1008, 420, 2688, 2400, 756, 1120, 2016, 840, 1512, 630, 4032, 1680, 3024, 1260, 2268, 3360, 6048, 2520, 4536, 6720
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2019

Keywords

Crossrefs

Formula

a(n) = A329900(A033833(n)).

A001055 The multiplicative partition function: number of ways of factoring n with all factors greater than 1 (a(1) = 1 by convention).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 9, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 11, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 5, 2, 1, 11, 2, 2, 2, 7, 1, 11, 2, 4, 2, 2, 2, 19, 1, 4, 4, 9, 1, 5, 1
Offset: 1

Views

Author

Keywords

Comments

From David W. Wilson, Feb 28 2009: (Start)
By a factorization of n we mean a multiset of integers > 1 whose product is n.
For example, 6 is the product of 2 such multisets, {2, 3} and {6}, so a(6) = 2.
Similarly 8 is the product of 3 such multisets, {2, 2, 2}, {2, 4} and {8}, so a(8) = 3.
1 is the product of 1 such multiset, namely the empty multiset {}, whose product is by definition the multiplicative identity 1. Hence a(1) = 1. (End)
a(n) = # { k | A064553(k) = n }. - Reinhard Zumkeller, Sep 21 2001; Benoit Cloitre and N. J. A. Sloane, May 15 2002
Number of members of A025487 with n divisors. - Matthew Vandermast, Jul 12 2004
See sequence A162247 for a list of the factorizations of n and a program for generating the factorizations for any n. - T. D. Noe, Jun 28 2009
So a(n) gives the number of different prime signatures that can be found among the integers that have n divisors. - Michel Marcus, Nov 11 2015
For n > 0, also the number of integer partitions of n with product n, ranked by A301987. For example, the a(12) = 4 partitions are: (12), (6,2,1,1,1,1), (4,3,1,1,1,1,1), (3,2,2,1,1,1,1,1). See also A380218. In general, A379666(m,n) = a(n) for any m >= n. - Gus Wiseman, Feb 07 2025

Examples

			1: 1, a(1) = 1
2: 2, a(2) = 1
3: 3, a(3) = 1
4: 4 = 2*2, a(4) = 2
6: 6 = 2*3, a(6) = 2
8: 8 = 2*4 = 2*2*2, a(8) = 3
etc.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 292-295.
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 198, exercise 9 (in the third edition 2015, p. 296, exercise 211).

Crossrefs

A045782 gives the range of a(n).
For records see A033833, A033834.
Row sums of A316439 (for n>1).
Cf. A096276 (partial sums).
The additive version is A000041 (integer partitions), strict A000009.
Row sums of A318950.
A002865 counts partitions into parts > 1.
A069016 counts distinct sums of factorizations.
A319000 counts partitions by product and sum, row sums A319916.
A379666 (transpose A380959) counts partitions by sum and product, without 1's A379668, strict A379671.

Programs

  • Haskell
    a001055 = (map last a066032_tabl !!) . (subtract 1)
    -- Reinhard Zumkeller, Oct 01 2012
    
  • Java
    public class MultiPart {
        public static void main(String[] argV) {
            for (int i=1;i<=100;++i) System.out.println(1+getDivisors(2,i));
        }
        public static int getDivisors(int min,int n) {
            int total = 0;
            for (int i=min;i=i) { ++total; if (n/i>i) total+=getDivisors(i,n/i); }
            return total;
        }
    } \\ Scott R. Shannon, Aug 21 2019
  • Maple
    with(numtheory):
    T := proc(n::integer, m::integer)
            local A, summe, d:
            if isprime(n) then
                    if n <= m then
                            return 1;
                    end if:
                    return 0 ;
            end if:
            A := divisors(n) minus {n, 1}:
            for d in A do
                    if d > m then
                            A := A minus {d}:
                    end if:
            end do:
            summe := add(T(n/d,d),d=A) ;
            if n <=m then
                    summe := summe + 1:
            end if:
            summe ;
    end proc:
    A001055 := n -> T(n, n):
    [seq(A001055(n), n=1..100)]; # Reinhard Zumkeller and Ulrich Schimke (ulrschimke(AT)aol.com)
  • Mathematica
    c[1, r_] := c[1, r]=1; c[n_, r_] := c[n, r] = Module[{ds, i}, ds = Select[Divisors[n], 1 < # <= r &]; Sum[c[n/ds[[i]], ds[[i]]], {i, 1, Length[ds]}]]; a[n_] := c[n, n]; a/@Range[100] (* c[n, r] is the number of factorizations of n with factors <= r. - Dean Hickerson, Oct 28 2002 *)
    T[, 1] = T[1, ] = 1;
    T[n_, m_] := T[n, m] = DivisorSum[n, Boole[1 < # <= m] * T[n/#, #]&];
    a[n_] := T[n, n];
    a /@ Range[100] (* Jean-François Alcover, Jan 03 2020 *)
  • PARI
    /* factorizations of n with factors <= m (n,m positive integers) */
    fcnt(n,m) = {local(s);s=0;if(n == 1,s=1,fordiv(n,d,if(d > 1 & d <= m,s=s+fcnt(n/d,d))));s}
    A001055(n) = fcnt(n,n) \\ Michael B. Porter, Oct 29 2009
    
  • PARI
    \\ code using Dirichlet g.f., based on Somos's code for A007896
    {a(n) = my(A, v, w, m);
    if(
    n<1, 0,
    \\ define unit vector v = [1, 0, 0, ...] of length n
    v = vector(n, k, k==1);
    for(k=2, n,
    m = #digits(n, k) - 1;
    \\ expand 1/(1-x)^k out far enough
    A = (1 - x)^ -1 + x * O(x^m);
    \\ w = zero vector of length n
    w = vector(n);
    \\ convert A to a vector
    for(i=0, m, w[k^i] = polcoeff(A, i));
    \\ build the answer
    v = dirmul(v, w)
    );
    v[n]
    )
    };
    \\ produce the sequence
    vector(100,n,a(n)) \\ N. J. A. Sloane, May 26 2014
    
  • PARI
    v=vector(100, k, k==1); for(n=2, #v, v+=dirmul(v, vector(#v, k, (k>1) && n^valuation(k,n)==k)) ); v \\ Max Alekseyev, Jul 16 2014
    
  • Python
    from sympy import divisors, isprime
    def T(n, m):
        if isprime(n): return 1 if n<=m else 0
        A=filter(lambda d: d<=m, divisors(n)[1:-1])
        s=sum(T(n//d, d) for d in A)
        return s + 1 if n<=m else s
    def a(n): return T(n, n)
    print([a(n) for n in range(1, 106)]) # Indranil Ghosh, Aug 19 2017
    

Formula

The asymptotic behavior of this sequence was studied by Canfield, Erdős & Pomerance and Luca, Mukhopadhyay, & Srinivas. - Jonathan Vos Post, Jul 07 2008
Dirichlet g.f.: Product_{k>=2} 1/(1 - 1/k^s).
If n = p^k for a prime p, a(n) = partitions(k) = A000041(k).
Since the sequence a(n) is the right diagonal of A066032, the given recursive formula for A066032 applies (see Maple program). - Reinhard Zumkeller and Ulrich Schimke (ulrschimke(AT)aol.com)
a(A002110(n)) = A000110(n).
a(p^k*q^k) = A002774(k) if p and q are distinct primes. - R. J. Mathar, Jun 06 2024
a(n) = A028422(n) + 1. - Gus Wiseman, Feb 07 2025

Extensions

Incorrect assertion about asymptotic behavior deleted by N. J. A. Sloane, Jun 08 2009

A330972 Sorted list containing the least number with each possible nonzero number of factorizations into factors > 1.

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 36, 48, 60, 72, 96, 120, 128, 144, 180, 192, 216, 240, 256, 288, 360, 384, 420, 432, 480, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1440, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2520, 2592, 2880, 3072, 3360, 3456, 3600
Offset: 1

Views

Author

Gus Wiseman, Jan 06 2020

Keywords

Comments

This is the sorted list of positions of first appearances in A001055 of each element of the range (A045782).

Examples

			Factorizations of n for n = 4, 8, 12, 16, 24, 36, 48, 60:
  4    8      12     16       24       36       48         60
  2*2  2*4    2*6    2*8      3*8      4*9      6*8        2*30
       2*2*2  3*4    4*4      4*6      6*6      2*24       3*20
              2*2*3  2*2*4    2*12     2*18     3*16       4*15
                     2*2*2*2  2*2*6    3*12     4*12       5*12
                              2*3*4    2*2*9    2*3*8      6*10
                              2*2*2*3  2*3*6    2*4*6      2*5*6
                                       3*3*4    3*4*4      3*4*5
                                       2*2*3*3  2*2*12     2*2*15
                                                2*2*2*6    2*3*10
                                                2*2*3*4    2*2*3*5
                                                2*2*2*2*3
		

Crossrefs

All terms belong to A025487
Includes all highly factorable numbers A033833.
Factorizations are A001055, with image A045782.
The least number with A045782(n) factorizations is A045783(n).
The least number with n factorizations is A330973(n).
The strict version is A330997.

Programs

  • Mathematica
    nn=1000;
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nds=Length/@Array[facs,nn];
    Table[Position[nds,i][[1,1]],{i,First/@Gather[nds]}]

A045782 Number of factorizations of n for some n (image of A001055).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 15, 16, 19, 21, 22, 26, 29, 30, 31, 36, 38, 42, 45, 47, 52, 56, 57, 64, 66, 67, 74, 77, 92, 97, 98, 101, 105, 109, 118, 135, 137, 139, 141, 162, 165, 171, 176, 181, 189, 195, 198, 203, 212, 231, 249, 250, 254, 257, 267, 269, 272, 289
Offset: 1

Views

Author

Keywords

Comments

Also the image of A318284. - Gus Wiseman, Jan 11 2020

Crossrefs

Factorizations are A001055 with image this sequence and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with exactly a(n) factorizations is A045783(n).
The least number with exactly n factorizations is A330973(n).

Programs

  • Mathematica
    terms = 61; m0 = 10^5; dm = 10^4;
    f[1, ] = 1; f[n, k_] := f[n, k] = Sum[f[n/d, d], {d, Select[Divisors[n], 1 < # <= k &]}];
    Clear[seq]; seq[m_] := seq[m] = Sort[Tally[Table[f[n, n], {n, 1, m}]][[All, 1]]][[1 ;; terms]]; seq[m = m0]; seq[m += dm]; While[Print[m]; seq[m] != seq[m - dm], m += dm];
    seq[m] (* Jean-François Alcover, Oct 04 2018 *)

Formula

The Luca et al. paper shows that the number of terms with a(n) <= x is x^{ O( log log log x / log log x )}. - N. J. A. Sloane, Jun 12 2009

Extensions

Name edited by Gus Wiseman, Jan 11 2020

A045783 Least value with A045782(n) factorizations.

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 36, 60, 48, 128, 72, 96, 120, 256, 180, 144, 192, 216, 420, 240, 1024, 384, 288, 360, 2048, 432, 480, 900, 768, 840, 576, 1260, 864, 720, 8192, 960, 1080, 1152, 4620, 1800, 3072, 1680, 1728, 1920, 1440, 32768, 2304, 2592, 6144
Offset: 1

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Jan 11 2020: (Start)
Factorizations of n = 1, 4, 8, 12, 16, 24, 36, 60, 48:
  {}  4    8      12     16       24       36       60       48
      2*2  2*4    2*6    2*8      3*8      4*9      2*30     6*8
           2*2*2  3*4    4*4      4*6      6*6      3*20     2*24
                  2*2*3  2*2*4    2*12     2*18     4*15     3*16
                         2*2*2*2  2*2*6    3*12     5*12     4*12
                                  2*3*4    2*2*9    6*10     2*3*8
                                  2*2*2*3  2*3*6    2*5*6    2*4*6
                                           3*3*4    3*4*5    3*4*4
                                           2*2*3*3  2*2*15   2*2*12
                                                    2*3*10   2*2*2*6
                                                    2*2*3*5  2*2*3*4
                                                             2*2*2*2*3
(End)
		

Crossrefs

All terms belong to A025487.
The strict version is A045780.
The sorted version is A330972.
Includes all highly factorable numbers A033833.
The least number with exactly n factorizations is A330973(n).
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.

A329900 Primorial deflation of n: starting from x = n, repeatedly divide x by the largest primorial A002110(k) that divides it, until x is an odd number. Then a(n) = Product prime(k_i), for primorial indices k_1 >= k_2 >= ..., encountered in the process.

Original entry on oeis.org

1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 6, 1, 2, 1, 16, 1, 3, 1, 4, 1, 2, 1, 12, 1, 2, 1, 4, 1, 5, 1, 32, 1, 2, 1, 9, 1, 2, 1, 8, 1, 3, 1, 4, 1, 2, 1, 24, 1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 10, 1, 2, 1, 64, 1, 3, 1, 4, 1, 2, 1, 18, 1, 2, 1, 4, 1, 3, 1, 16, 1, 2, 1, 6, 1, 2, 1, 8, 1, 5, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 3, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2019

Keywords

Comments

When applied to arbitrary n, the "primorial deflation" (term coined by Matthew Vandermast in A181815) induces the splitting of n to two factors A328478(n)*A328479(n) = n, where we call A328478(n) the non-deflatable component of n (which is essentially discarded), while A328479(n) is the deflatable component. Only if n is in A025487, then the entire n is deflatable, i.e., A328478(n) = 1 and A328479(n) = n.
According to Daniel Suteu, also the ratio (A319626(n) / A319627(n)) can be viewed as a "primorial deflation". That definition coincides with this one when restricted to terms of A025487, as for all k in A025487, A319626(k) = a(k), and A319627(k) = 1. - Antti Karttunen, Dec 29 2019

Crossrefs

Programs

  • Mathematica
    Array[If[OddQ@ #, 1, Times @@ Prime@ # &@ Rest@ NestWhile[Append[#1, {#3, Drop[#, -LengthWhile[Reverse@ #, # == 0 &]] &[#2 - PadRight[ConstantArray[1, #3], Length@ #2]]}] & @@ {#1, #2, LengthWhile[#2, # > 0 &]} & @@ {#, #[[-1, -1]]} &, {{0, TakeWhile[If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #], # > 0 &]}}, And[FreeQ[#[[-1, -1]], 0], Length[#[[-1, -1]] ] != 0] &][[All, 1]] ] &, 105] (* Michael De Vlieger, Dec 28 2019 *)
    Array[Times @@ Prime@(TakeWhile[Reap[FixedPointList[Block[{k = 1}, While[Mod[#, Prime@ k] == 0, k++]; Sow[k - 1]; #/Product[Prime@ i, {i, k - 1}]] &, #]][[-1, 1]], # > 0 &]) &, 105] (* Michael De Vlieger, Jan 11 2020 *)
  • PARI
    A329900(n) = { my(m=1, pp=1); while(1, forprime(p=2, ,if(n%p, if(2==p, return(m), break), n /= p; pp = p)); m *= pp); (m); };
    
  • PARI
    A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p));
    A276084(n) = { for(i=1,oo,if(n%prime(i),return(i-1))); }
    A329900(n) = if(n%2,1,prime(A276084(n))*A329900(A111701(n)));

Formula

For odd n, a(n) = 1, for even n, a(n) = A000040(A276084(n)) * a(A111701(n)).
For even n, a(n) = A000040(A276084(n)) * a(n/A002110(A276084(n))).
A108951(a(n)) = A328479(n), for n >= 1.
a(A108951(n)) = n, for n >= 1.
a(A328479(n)) = a(n), for n >= 1.
a(A328478(n)) = 1, for n >= 1.
a(A002110(n)) = A000040(n), for n >= 1.
a(A000142(n)) = A307035(n), for n >= 0.
a(A283477(n)) = A019565(n), for n >= 0.
a(A329886(n)) = A005940(1+n), for n >= 0.
a(A329887(n)) = A163511(n), for n >= 0.
a(A329602(n)) = A329888(n), for n >= 1.
a(A025487(n)) = A181815(n), for n >= 1.
a(A124859(n)) = A181819(n), for n >= 1.
a(A181817(n)) = A025487(n), for n >= 1.
a(A181821(n)) = A122111(n), for n >= 1.
a(A002182(n)) = A329902(n), for n >= 1.
a(A260633(n)) = A329889(n), for n >= 1.
a(A033833(n)) = A330685(n), for n >= 1.
a(A307866(1+n)) = A330686(n), for n >= 1.
a(A330687(n)) = A330689(n), for n >= 1.

A330973 Least positive integer with exactly n factorizations into factors > 1, and 0 if no such number exists.

Original entry on oeis.org

1, 4, 8, 12, 16, 0, 24, 0, 36, 0, 60, 48, 0, 0, 128, 72, 0, 0, 96, 0, 120, 256, 0, 0, 0, 180, 0, 0, 144, 192, 216, 0, 0, 0, 0, 420, 0, 240, 0, 0, 0, 1024, 0, 0, 384, 0, 288, 0, 0, 0, 0, 360, 0, 0, 0, 2048, 432, 0, 0, 0, 0, 0, 0, 480, 0, 900, 768, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 06 2020

Keywords

Crossrefs

All nonzero terms belong to A025487.
Includes all highly factorable numbers A033833.
Factorizations are A001055, with image A045782.
The version without zeros is A045783.
The sorted version is A330972.
The strict version is A330974.
Positions of zeros are A330976.

Programs

  • Mathematica
    nn=10;
    fam[n_]:=fam[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[fam[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nds=Length/@Array[fam[#]&,2^nn];
    Table[If[#=={},0,#[[1,1]]]&[Position[nds,i]],{i,nn}]

Extensions

More terms from Jinyuan Wang, Jul 07 2021

A330976 Numbers that are not the number of factorizations into factors > 1 of any positive integer.

Original entry on oeis.org

6, 8, 10, 13, 14, 17, 18, 20, 23, 24, 25, 27, 28, 32, 33, 34, 35, 37, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 53, 54, 55, 58, 59, 60, 61, 62, 63, 65, 68, 69, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 99
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

Warning: I have only confirmed the first eight terms. The rest are derived from A045782. - Gus Wiseman, Jan 07 2020

Crossrefs

Complement of A045782.
The strict version is A330975.
Factorizations are A001055, with image A045782.
Strict factorizations are A045778, with image A045779.
The least number with n factorizations is A330973(n).

Programs

  • Mathematica
    nn=15;
    fam[n_]:=fam[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[fam[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nds=Length/@Array[fam[#]&,2^nn];
    Complement[Range[nn],nds]

A045779 Number of factorizations of n into distinct factors for some n (image of A045778).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 21, 22, 25, 27, 31, 32, 33, 34, 38, 40, 42, 43, 44, 46, 52, 54, 55, 56, 57, 59, 61, 64, 67, 70, 74, 76, 80, 83, 88, 89, 91, 93, 100, 104, 110, 111, 112, 116, 117, 120, 122, 123, 132, 137, 140, 141, 142, 143, 148
Offset: 1

Views

Author

Keywords

Comments

We may use A045778(k*m) >= A045778(k) for any k, m >= 1 to disprove presence of some positive integer in this sequence. - David A. Corneth, Oct 24 2024

Examples

			From _David A. Corneth_, Oct 24 2024: (Start)
5 is a term as 24 has five factorizations into distinct divisors of 24 namely 24 = 2 * 12 = 3 * 8 = 4 * 6 = 2 * 3 * 4 which is five such factorizations.
11 is not a term. From terms in A025487 only the numbers 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 128, 256, 512, 1024 have no more than 11 such factorizations. Any multiple of these numbers in A025487 that is not already listed has more than 11 such factorizations which proves 11 is not in this sequence. (End)
		

Crossrefs

Factorizations are A001055, with image A045782, with complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with A045779(n) strict factorizations is A045780(n).
The least number with n strict factorizations is A330974(n).

Extensions

Name edited by Gus Wiseman, Jan 11 2020
Showing 1-10 of 36 results. Next