cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A045780 Least value with A045779(n) factorizations into distinct factors.

Original entry on oeis.org

1, 6, 12, 64, 24, 256, 48, 512, 60, 96, 2048, 144, 210, 120, 216, 180, 384, 288, 16384, 240, 432, 420, 65536, 1536, 360, 480, 900, 864, 3072, 1152, 1296, 2310, 524288, 6144, 960, 720, 840, 2304, 1728, 1080, 1260, 2592, 2097152, 1800, 4608, 24576, 4194304, 1440, 3456
Offset: 1

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Jan 11 2020: (Start)
The strict factorizations of a(n) for n = 1..9:
  ()  (6)    (12)   (64)     (24)     (256)     (48)     (512)     (60)
      (2*3)  (2*6)  (2*32)   (3*8)    (4*64)    (6*8)    (8*64)    (2*30)
             (3*4)  (4*16)   (4*6)    (8*32)    (2*24)   (16*32)   (3*20)
                    (2*4*8)  (2*12)   (2*128)   (3*16)   (2*256)   (4*15)
                             (2*3*4)  (2*4*32)  (4*12)   (4*128)   (5*12)
                                      (2*8*16)  (2*3*8)  (2*4*64)  (6*10)
                                                (2*4*6)  (2*8*32)  (2*5*6)
                                                         (4*8*16)  (3*4*5)
                                                                   (2*3*10)
(End)
30 is not in the sequence even though A045779(30) = 5. As 24 is the smallest k such that A045779(k) = 5 we have a(m) = 24 where m is such that A045779(m) = 5 which turns out to be m = 5 (not every positive integer is in A045779). So a(5) = 24. - _David A. Corneth_, Oct 24 2024
		

Crossrefs

All terms belong to A025487.
The non-strict version is A045783.
The sorted version is A330997.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with exactly n strict factorizations is A330974(n).

Extensions

More terms from David A. Corneth, Oct 24 2024

A045778 Number of factorizations of n into distinct factors greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 5, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 2, 2, 1, 9, 2, 2, 2, 5, 1, 9, 2, 3, 2, 2, 2, 10, 1, 3, 3, 5, 1, 5, 1, 5
Offset: 1

Views

Author

Keywords

Comments

This sequence depends only on the prime signature of n and not on the actual value of n.
Also the number of strict multiset partitions (sets of multisets) of the prime factors of n. - Gus Wiseman, Dec 03 2016
Number of sets of integers greater than 1 whose product is n. - Antti Karttunen, Feb 20 2024

Examples

			24 can be factored as 24, 2*12, 3*8, 4*6, or 2*3*4, so a(24) = 5. The factorization 2*2*6 is not permitted because the factor 2 is present twice. a(1) = 1 represents the empty factorization.
		

Crossrefs

Cf. A036469, A114591, A114592, A316441 (Dirichlet inverse).
Cf. A156648 (2*Dgf at s=2), A073017 (2*Dgf at s=3), A258870 (2*Dgf at s=4).
Cf. also A069626 (Number of sets of integers > 1 whose least common multiple is n).
Cf. A287549 (partial sums).

Programs

  • APL
    ⍝ Dyalog dialect
    divisors ← {ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð, (⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð}
    A045778 ← { D←1↓divisors(⍵) ⋄ T←(⍴D)⍴2 ⋄ +/⍵⍷{×/D/⍨T⊤⍵}¨(-∘1)⍳2*⍴D } ⍝ (simple, but a memory hog)
    A045778 ← { ⍺←⌽divisors(⍵) ⋄ 1=⍵:1 ⋄ 0=≢⍺:0 ⋄ R←⍺↓⍨⍺⍳⍵∘÷ ⋄ Ð←{⍺/⍨0=⍺|⍵} ⋄ +/(((R)Ð⊢)∇⊢)¨(⍵∘÷)¨⍺ } ⍝ (more efficient) - Antti Karttunen, Feb 20 2024
  • Maple
    with(numtheory):
    b:= proc(n, k) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d-1)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=1..120);  # Alois P. Heinz, May 26 2013
  • Mathematica
    gd[m_, 1] := 1; gd[1, n_] := 0; gd[1, 1] := 1; gd[0, n_] := 0; gd[m_, n_] := gd[m, n] = Total[gd[# - 1, n/#] & /@ Select[Divisors[n], # <= m &]]; Array[ gd[#, #] &, 100]  (* Alexander Adam, Dec 28 2012 *)
  • PARI
    v=vector(100,k,k==1); for(n=2,#v, v+=dirmul(v,vector(#v,k,k==n)) ); v /* Max Alekseyev, Jul 16 2014 */
    
  • PARI
    A045778(n, k=n) = ((n<=k) + sumdiv(n, d, if(d > 1 && d <= k && d < n, A045778(n/d, d-1)))); \\ After Alois P. Heinz's Maple-code by Antti Karttunen, Jul 23 2017, edited Feb 20 2024
    
  • PARI
    A045778(n, m=n) = if(1==n, 1, sumdiv(n,d,if((d>1)&&(d<=m),A045778(n/d,d-1)))); \\ Antti Karttunen, Feb 20 2024
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import divisors, isprime
    @cacheit
    def b(n, k): return (0 if n>k else 1) + (0 if isprime(n) else sum(0 if d>k else b(n//d, d - 1) for d in divisors(n)[1:-1]))
    def a(n): return b(n, n)
    print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Aug 19 2017, after Maple code
    

Formula

Dirichlet g.f.: Product_{n>=2} (1 + 1/n^s).
Let p and q be two distinct prime numbers and k a natural number. Then a(p^k) = A000009(k) and a(p^k*q) = A036469(k). - Alexander Adam, Dec 28 2012
Let p_i with 1<=i<=k k distinct prime numbers. Then a(Product_{i=1..k} p_i) = A000110(k). - Alexander Adam, Dec 28 2012

Extensions

Edited by Franklin T. Adams-Watters, Jun 04 2009

A045782 Number of factorizations of n for some n (image of A001055).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 15, 16, 19, 21, 22, 26, 29, 30, 31, 36, 38, 42, 45, 47, 52, 56, 57, 64, 66, 67, 74, 77, 92, 97, 98, 101, 105, 109, 118, 135, 137, 139, 141, 162, 165, 171, 176, 181, 189, 195, 198, 203, 212, 231, 249, 250, 254, 257, 267, 269, 272, 289
Offset: 1

Views

Author

Keywords

Comments

Also the image of A318284. - Gus Wiseman, Jan 11 2020

Crossrefs

Factorizations are A001055 with image this sequence and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with exactly a(n) factorizations is A045783(n).
The least number with exactly n factorizations is A330973(n).

Programs

  • Mathematica
    terms = 61; m0 = 10^5; dm = 10^4;
    f[1, ] = 1; f[n, k_] := f[n, k] = Sum[f[n/d, d], {d, Select[Divisors[n], 1 < # <= k &]}];
    Clear[seq]; seq[m_] := seq[m] = Sort[Tally[Table[f[n, n], {n, 1, m}]][[All, 1]]][[1 ;; terms]]; seq[m = m0]; seq[m += dm]; While[Print[m]; seq[m] != seq[m - dm], m += dm];
    seq[m] (* Jean-François Alcover, Oct 04 2018 *)

Formula

The Luca et al. paper shows that the number of terms with a(n) <= x is x^{ O( log log log x / log log x )}. - N. J. A. Sloane, Jun 12 2009

Extensions

Name edited by Gus Wiseman, Jan 11 2020

A045783 Least value with A045782(n) factorizations.

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 36, 60, 48, 128, 72, 96, 120, 256, 180, 144, 192, 216, 420, 240, 1024, 384, 288, 360, 2048, 432, 480, 900, 768, 840, 576, 1260, 864, 720, 8192, 960, 1080, 1152, 4620, 1800, 3072, 1680, 1728, 1920, 1440, 32768, 2304, 2592, 6144
Offset: 1

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Jan 11 2020: (Start)
Factorizations of n = 1, 4, 8, 12, 16, 24, 36, 60, 48:
  {}  4    8      12     16       24       36       60       48
      2*2  2*4    2*6    2*8      3*8      4*9      2*30     6*8
           2*2*2  3*4    4*4      4*6      6*6      3*20     2*24
                  2*2*3  2*2*4    2*12     2*18     4*15     3*16
                         2*2*2*2  2*2*6    3*12     5*12     4*12
                                  2*3*4    2*2*9    6*10     2*3*8
                                  2*2*2*3  2*3*6    2*5*6    2*4*6
                                           3*3*4    3*4*5    3*4*4
                                           2*2*3*3  2*2*15   2*2*12
                                                    2*3*10   2*2*2*6
                                                    2*2*3*5  2*2*3*4
                                                             2*2*2*2*3
(End)
		

Crossrefs

All terms belong to A025487.
The strict version is A045780.
The sorted version is A330972.
Includes all highly factorable numbers A033833.
The least number with exactly n factorizations is A330973(n).
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.

A330973 Least positive integer with exactly n factorizations into factors > 1, and 0 if no such number exists.

Original entry on oeis.org

1, 4, 8, 12, 16, 0, 24, 0, 36, 0, 60, 48, 0, 0, 128, 72, 0, 0, 96, 0, 120, 256, 0, 0, 0, 180, 0, 0, 144, 192, 216, 0, 0, 0, 0, 420, 0, 240, 0, 0, 0, 1024, 0, 0, 384, 0, 288, 0, 0, 0, 0, 360, 0, 0, 0, 2048, 432, 0, 0, 0, 0, 0, 0, 480, 0, 900, 768, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 06 2020

Keywords

Crossrefs

All nonzero terms belong to A025487.
Includes all highly factorable numbers A033833.
Factorizations are A001055, with image A045782.
The version without zeros is A045783.
The sorted version is A330972.
The strict version is A330974.
Positions of zeros are A330976.

Programs

  • Mathematica
    nn=10;
    fam[n_]:=fam[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[fam[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nds=Length/@Array[fam[#]&,2^nn];
    Table[If[#=={},0,#[[1,1]]]&[Position[nds,i]],{i,nn}]

Extensions

More terms from Jinyuan Wang, Jul 07 2021

A330976 Numbers that are not the number of factorizations into factors > 1 of any positive integer.

Original entry on oeis.org

6, 8, 10, 13, 14, 17, 18, 20, 23, 24, 25, 27, 28, 32, 33, 34, 35, 37, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 53, 54, 55, 58, 59, 60, 61, 62, 63, 65, 68, 69, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 99
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

Warning: I have only confirmed the first eight terms. The rest are derived from A045782. - Gus Wiseman, Jan 07 2020

Crossrefs

Complement of A045782.
The strict version is A330975.
Factorizations are A001055, with image A045782.
Strict factorizations are A045778, with image A045779.
The least number with n factorizations is A330973(n).

Programs

  • Mathematica
    nn=15;
    fam[n_]:=fam[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[fam[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nds=Length/@Array[fam[#]&,2^nn];
    Complement[Range[nn],nds]

A330974 Least positive integer with n factorizations into distinct factors > 1, and 0 if no such number exists.

Original entry on oeis.org

1, 6, 12, 64, 24, 256, 48, 512, 60, 96, 0, 2048, 0, 144, 210, 120, 216, 180, 384, 0, 288, 16384, 0, 0, 240, 0, 432, 0, 0, 0, 420, 65536, 1536, 360, 0, 0, 0, 480, 0, 900, 0, 864, 3072, 1152, 0, 1296, 0, 0, 0, 0, 0, 2310, 0, 524288, 6144, 960, 720, 0, 840, 0, 2304
Offset: 1

Views

Author

Gus Wiseman, Jan 06 2020

Keywords

Crossrefs

All nonzero terms belong to A025487.
Strict factorizations are A045778, with image A045779.
The version with zeros removed is A045780.
The non-strict version is A330973.
Positions of zeros are A330975.
The sorted version is A330997.

Programs

  • Mathematica
    nn=10;
    fam[n_]:=fam[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[fam[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nds=Length/@Array[Select[fam[#],UnsameQ@@#&]&,2^nn];
    Table[If[#=={},0,#[[1,1]]]&[Position[nds,i]],{i,nn}]

Extensions

More terms from Jinyuan Wang, Jul 07 2021

A330997 Sorted list containing the least number with each possible nonzero number of factorizations into distinct factors > 1.

Original entry on oeis.org

1, 6, 12, 24, 48, 60, 64, 96, 120, 144, 180, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 720, 840, 864, 900, 960, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 2048, 2160, 2304, 2310, 2520, 2592, 2880, 3072, 3360, 3456, 3600, 3840, 4320
Offset: 1

Views

Author

Gus Wiseman, Jan 06 2020

Keywords

Examples

			The strict factorizations of a(n) for n = 1..9.
  {}  6    12   24     48     60      64     96      120
      2*3  2*6  3*8    6*8    2*30    2*32   2*48    2*60
           3*4  4*6    2*24   3*20    4*16   3*32    3*40
                2*12   3*16   4*15    2*4*8  4*24    4*30
                2*3*4  4*12   5*12           6*16    5*24
                       2*3*8  6*10           8*12    6*20
                       2*4*6  2*5*6          2*6*8   8*15
                              3*4*5          3*4*8   10*12
                              2*3*10         2*3*16  3*5*8
                                             2*4*12  4*5*6
                                                     2*3*20
                                                     2*4*15
                                                     2*5*12
                                                     2*6*10
                                                     3*4*10
                                                     2*3*4*5
		

Crossrefs

All terms belong to A025487.
Strict factorizations are A045778, with image A045779.
The unsorted version is A045780.
The non-strict version is A330972.
The least number with n strict factorizations is A330974.

Programs

  • Mathematica
    nn=1000;
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    nds=Length/@Array[strfacs,nn];
    Table[Position[nds,i][[1,1]],{i,First/@Gather[nds]}]

A330975 Numbers that are not the number of factorizations of n into distinct factors > 1 for any n.

Original entry on oeis.org

11, 13, 20, 23, 24, 26, 28, 29, 30, 35, 36, 37, 39, 41, 45, 47, 48, 49, 50, 51, 53, 58, 60, 62, 63, 65, 66, 68, 69, 71, 72, 73, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 90, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108, 109, 113, 114, 115, 118
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

Warning: I have only confirmed the first three terms. The rest are derived from A045779. - Gus Wiseman, Jan 07 2020

Crossrefs

Complement of A045779.
The non-strict version is A330976.
Factorizations are A001055, with image A045782, with complement A330976.
Strict factorizations are A045778, with image A045779.
The least positive integer with n strict factorizations is A330974(n).

Programs

  • Mathematica
    nn=20;
    fam[n_]:=fam[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[fam[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nds=Length/@Array[Select[fam[#],UnsameQ@@#&]&,2^nn];
    Complement[Range[nn],nds]

A331023 Numerator: factorizations divided by strict factorizations A001055(n)/A045778(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 5, 1, 4, 1, 4, 1, 1, 1, 7, 2, 1, 3, 4, 1, 1, 1, 7, 1, 1, 1, 9, 1, 1, 1, 7, 1, 1, 1, 4, 4, 1, 1, 12, 2, 4, 1, 4, 1, 7, 1, 7, 1, 1, 1, 11, 1, 1, 4, 11, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 4, 4, 1, 1, 1, 12, 5, 1, 1, 11, 1, 1, 1, 7, 1, 11, 1, 4, 1, 1, 1, 19, 1, 4, 4, 9, 1, 1, 1, 7, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2020

Keywords

Comments

A factorization of n is a finite, nondecreasing sequence of positive integers > 1 with product n. It is strict if the factors are all different. Factorizations and strict factorizations are counted by A001055 and A045778 respectively.

Crossrefs

Positions of 1's are A005117.
Positions of 2's appear to be A001248.
The denominators are A331024.
The rounded quotients are A331048.
The same for integer partitions is A330994.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[facs[n]]/Length[Select[facs[n],UnsameQ@@#&]],{n,100}]//Numerator
  • PARI
    A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
    A045778(n, m=n) = ((n<=m) + sumdiv(n, d, if((d>1)&&(d<=m)&&(dA045778(n/d, d-1))));
    A331023(n) = numerator(A001055(n)/A045778(n)); \\ Antti Karttunen, May 27 2021

Formula

a(2^n) = A330994(n).

Extensions

More terms from Antti Karttunen, May 27 2021
Showing 1-10 of 18 results. Next