cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A045778 Number of factorizations of n into distinct factors greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 5, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 2, 2, 1, 9, 2, 2, 2, 5, 1, 9, 2, 3, 2, 2, 2, 10, 1, 3, 3, 5, 1, 5, 1, 5
Offset: 1

Views

Author

Keywords

Comments

This sequence depends only on the prime signature of n and not on the actual value of n.
Also the number of strict multiset partitions (sets of multisets) of the prime factors of n. - Gus Wiseman, Dec 03 2016
Number of sets of integers greater than 1 whose product is n. - Antti Karttunen, Feb 20 2024

Examples

			24 can be factored as 24, 2*12, 3*8, 4*6, or 2*3*4, so a(24) = 5. The factorization 2*2*6 is not permitted because the factor 2 is present twice. a(1) = 1 represents the empty factorization.
		

Crossrefs

Cf. A036469, A114591, A114592, A316441 (Dirichlet inverse).
Cf. A156648 (2*Dgf at s=2), A073017 (2*Dgf at s=3), A258870 (2*Dgf at s=4).
Cf. also A069626 (Number of sets of integers > 1 whose least common multiple is n).
Cf. A287549 (partial sums).

Programs

  • APL
    ⍝ Dyalog dialect
    divisors ← {ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð, (⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð}
    A045778 ← { D←1↓divisors(⍵) ⋄ T←(⍴D)⍴2 ⋄ +/⍵⍷{×/D/⍨T⊤⍵}¨(-∘1)⍳2*⍴D } ⍝ (simple, but a memory hog)
    A045778 ← { ⍺←⌽divisors(⍵) ⋄ 1=⍵:1 ⋄ 0=≢⍺:0 ⋄ R←⍺↓⍨⍺⍳⍵∘÷ ⋄ Ð←{⍺/⍨0=⍺|⍵} ⋄ +/(((R)Ð⊢)∇⊢)¨(⍵∘÷)¨⍺ } ⍝ (more efficient) - Antti Karttunen, Feb 20 2024
  • Maple
    with(numtheory):
    b:= proc(n, k) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d-1)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=1..120);  # Alois P. Heinz, May 26 2013
  • Mathematica
    gd[m_, 1] := 1; gd[1, n_] := 0; gd[1, 1] := 1; gd[0, n_] := 0; gd[m_, n_] := gd[m, n] = Total[gd[# - 1, n/#] & /@ Select[Divisors[n], # <= m &]]; Array[ gd[#, #] &, 100]  (* Alexander Adam, Dec 28 2012 *)
  • PARI
    v=vector(100,k,k==1); for(n=2,#v, v+=dirmul(v,vector(#v,k,k==n)) ); v /* Max Alekseyev, Jul 16 2014 */
    
  • PARI
    A045778(n, k=n) = ((n<=k) + sumdiv(n, d, if(d > 1 && d <= k && d < n, A045778(n/d, d-1)))); \\ After Alois P. Heinz's Maple-code by Antti Karttunen, Jul 23 2017, edited Feb 20 2024
    
  • PARI
    A045778(n, m=n) = if(1==n, 1, sumdiv(n,d,if((d>1)&&(d<=m),A045778(n/d,d-1)))); \\ Antti Karttunen, Feb 20 2024
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import divisors, isprime
    @cacheit
    def b(n, k): return (0 if n>k else 1) + (0 if isprime(n) else sum(0 if d>k else b(n//d, d - 1) for d in divisors(n)[1:-1]))
    def a(n): return b(n, n)
    print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Aug 19 2017, after Maple code
    

Formula

Dirichlet g.f.: Product_{n>=2} (1 + 1/n^s).
Let p and q be two distinct prime numbers and k a natural number. Then a(p^k) = A000009(k) and a(p^k*q) = A036469(k). - Alexander Adam, Dec 28 2012
Let p_i with 1<=i<=k k distinct prime numbers. Then a(Product_{i=1..k} p_i) = A000110(k). - Alexander Adam, Dec 28 2012

Extensions

Edited by Franklin T. Adams-Watters, Jun 04 2009

A045783 Least value with A045782(n) factorizations.

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 36, 60, 48, 128, 72, 96, 120, 256, 180, 144, 192, 216, 420, 240, 1024, 384, 288, 360, 2048, 432, 480, 900, 768, 840, 576, 1260, 864, 720, 8192, 960, 1080, 1152, 4620, 1800, 3072, 1680, 1728, 1920, 1440, 32768, 2304, 2592, 6144
Offset: 1

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Jan 11 2020: (Start)
Factorizations of n = 1, 4, 8, 12, 16, 24, 36, 60, 48:
  {}  4    8      12     16       24       36       60       48
      2*2  2*4    2*6    2*8      3*8      4*9      2*30     6*8
           2*2*2  3*4    4*4      4*6      6*6      3*20     2*24
                  2*2*3  2*2*4    2*12     2*18     4*15     3*16
                         2*2*2*2  2*2*6    3*12     5*12     4*12
                                  2*3*4    2*2*9    6*10     2*3*8
                                  2*2*2*3  2*3*6    2*5*6    2*4*6
                                           3*3*4    3*4*5    3*4*4
                                           2*2*3*3  2*2*15   2*2*12
                                                    2*3*10   2*2*2*6
                                                    2*2*3*5  2*2*3*4
                                                             2*2*2*2*3
(End)
		

Crossrefs

All terms belong to A025487.
The strict version is A045780.
The sorted version is A330972.
Includes all highly factorable numbers A033833.
The least number with exactly n factorizations is A330973(n).
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.

A045779 Number of factorizations of n into distinct factors for some n (image of A045778).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 21, 22, 25, 27, 31, 32, 33, 34, 38, 40, 42, 43, 44, 46, 52, 54, 55, 56, 57, 59, 61, 64, 67, 70, 74, 76, 80, 83, 88, 89, 91, 93, 100, 104, 110, 111, 112, 116, 117, 120, 122, 123, 132, 137, 140, 141, 142, 143, 148
Offset: 1

Views

Author

Keywords

Comments

We may use A045778(k*m) >= A045778(k) for any k, m >= 1 to disprove presence of some positive integer in this sequence. - David A. Corneth, Oct 24 2024

Examples

			From _David A. Corneth_, Oct 24 2024: (Start)
5 is a term as 24 has five factorizations into distinct divisors of 24 namely 24 = 2 * 12 = 3 * 8 = 4 * 6 = 2 * 3 * 4 which is five such factorizations.
11 is not a term. From terms in A025487 only the numbers 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 128, 256, 512, 1024 have no more than 11 such factorizations. Any multiple of these numbers in A025487 that is not already listed has more than 11 such factorizations which proves 11 is not in this sequence. (End)
		

Crossrefs

Factorizations are A001055, with image A045782, with complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with A045779(n) strict factorizations is A045780(n).
The least number with n strict factorizations is A330974(n).

Extensions

Name edited by Gus Wiseman, Jan 11 2020

A330974 Least positive integer with n factorizations into distinct factors > 1, and 0 if no such number exists.

Original entry on oeis.org

1, 6, 12, 64, 24, 256, 48, 512, 60, 96, 0, 2048, 0, 144, 210, 120, 216, 180, 384, 0, 288, 16384, 0, 0, 240, 0, 432, 0, 0, 0, 420, 65536, 1536, 360, 0, 0, 0, 480, 0, 900, 0, 864, 3072, 1152, 0, 1296, 0, 0, 0, 0, 0, 2310, 0, 524288, 6144, 960, 720, 0, 840, 0, 2304
Offset: 1

Views

Author

Gus Wiseman, Jan 06 2020

Keywords

Crossrefs

All nonzero terms belong to A025487.
Strict factorizations are A045778, with image A045779.
The version with zeros removed is A045780.
The non-strict version is A330973.
Positions of zeros are A330975.
The sorted version is A330997.

Programs

  • Mathematica
    nn=10;
    fam[n_]:=fam[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[fam[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nds=Length/@Array[Select[fam[#],UnsameQ@@#&]&,2^nn];
    Table[If[#=={},0,#[[1,1]]]&[Position[nds,i]],{i,nn}]

Extensions

More terms from Jinyuan Wang, Jul 07 2021

A330997 Sorted list containing the least number with each possible nonzero number of factorizations into distinct factors > 1.

Original entry on oeis.org

1, 6, 12, 24, 48, 60, 64, 96, 120, 144, 180, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 720, 840, 864, 900, 960, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 2048, 2160, 2304, 2310, 2520, 2592, 2880, 3072, 3360, 3456, 3600, 3840, 4320
Offset: 1

Views

Author

Gus Wiseman, Jan 06 2020

Keywords

Examples

			The strict factorizations of a(n) for n = 1..9.
  {}  6    12   24     48     60      64     96      120
      2*3  2*6  3*8    6*8    2*30    2*32   2*48    2*60
           3*4  4*6    2*24   3*20    4*16   3*32    3*40
                2*12   3*16   4*15    2*4*8  4*24    4*30
                2*3*4  4*12   5*12           6*16    5*24
                       2*3*8  6*10           8*12    6*20
                       2*4*6  2*5*6          2*6*8   8*15
                              3*4*5          3*4*8   10*12
                              2*3*10         2*3*16  3*5*8
                                             2*4*12  4*5*6
                                                     2*3*20
                                                     2*4*15
                                                     2*5*12
                                                     2*6*10
                                                     3*4*10
                                                     2*3*4*5
		

Crossrefs

All terms belong to A025487.
Strict factorizations are A045778, with image A045779.
The unsorted version is A045780.
The non-strict version is A330972.
The least number with n strict factorizations is A330974.

Programs

  • Mathematica
    nn=1000;
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    nds=Length/@Array[strfacs,nn];
    Table[Position[nds,i][[1,1]],{i,First/@Gather[nds]}]

A330975 Numbers that are not the number of factorizations of n into distinct factors > 1 for any n.

Original entry on oeis.org

11, 13, 20, 23, 24, 26, 28, 29, 30, 35, 36, 37, 39, 41, 45, 47, 48, 49, 50, 51, 53, 58, 60, 62, 63, 65, 66, 68, 69, 71, 72, 73, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 90, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108, 109, 113, 114, 115, 118
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

Warning: I have only confirmed the first three terms. The rest are derived from A045779. - Gus Wiseman, Jan 07 2020

Crossrefs

Complement of A045779.
The non-strict version is A330976.
Factorizations are A001055, with image A045782, with complement A330976.
Strict factorizations are A045778, with image A045779.
The least positive integer with n strict factorizations is A330974(n).

Programs

  • Mathematica
    nn=20;
    fam[n_]:=fam[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[fam[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nds=Length/@Array[Select[fam[#],UnsameQ@@#&]&,2^nn];
    Complement[Range[nn],nds]

A331023 Numerator: factorizations divided by strict factorizations A001055(n)/A045778(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 5, 1, 4, 1, 4, 1, 1, 1, 7, 2, 1, 3, 4, 1, 1, 1, 7, 1, 1, 1, 9, 1, 1, 1, 7, 1, 1, 1, 4, 4, 1, 1, 12, 2, 4, 1, 4, 1, 7, 1, 7, 1, 1, 1, 11, 1, 1, 4, 11, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 4, 4, 1, 1, 1, 12, 5, 1, 1, 11, 1, 1, 1, 7, 1, 11, 1, 4, 1, 1, 1, 19, 1, 4, 4, 9, 1, 1, 1, 7, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2020

Keywords

Comments

A factorization of n is a finite, nondecreasing sequence of positive integers > 1 with product n. It is strict if the factors are all different. Factorizations and strict factorizations are counted by A001055 and A045778 respectively.

Crossrefs

Positions of 1's are A005117.
Positions of 2's appear to be A001248.
The denominators are A331024.
The rounded quotients are A331048.
The same for integer partitions is A330994.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[facs[n]]/Length[Select[facs[n],UnsameQ@@#&]],{n,100}]//Numerator
  • PARI
    A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
    A045778(n, m=n) = ((n<=m) + sumdiv(n, d, if((d>1)&&(d<=m)&&(dA045778(n/d, d-1))));
    A331023(n) = numerator(A001055(n)/A045778(n)); \\ Antti Karttunen, May 27 2021

Formula

a(2^n) = A330994(n).

Extensions

More terms from Antti Karttunen, May 27 2021

A331024 Denominator: factorizations divided by strict factorizations A001055(n)/A045778(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 7, 1, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 9, 1, 1, 3, 4, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 3, 3, 1, 1, 1, 7, 2, 1, 1, 9, 1, 1, 1, 5, 1, 9, 1, 3, 1, 1, 1, 10, 1, 3, 3, 5, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2020

Keywords

Comments

A factorization of n is a finite, nondecreasing sequence of positive integers > 1 with product n. It is strict if the factors are all different. Factorizations and strict factorizations are counted by A001055 and A045778 respectively.

Crossrefs

Positions of 1's include all elements of A001248 as well as A005117. The first position of a 1 that is not in A167207 is 128.
The numerators are A331023.
The rounded quotients are A331048.
The same for integer partitions is A330995.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[facs[n]]/Length[Select[facs[n],UnsameQ@@#&]],{n,100}]//Denominator
  • PARI
    A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
    A045778(n, m=n) = ((n<=m) + sumdiv(n, d, if((d>1)&&(d<=m)&&(dA045778(n/d, d-1))));
    A331024(n) = denominator(A001055(n)/A045778(n)); \\ Antti Karttunen, May 27 2021

Formula

a(2^n) = A330995(n).

Extensions

More terms from Antti Karttunen, May 27 2021

A331200 Least number with each record number of factorizations into distinct factors > 1.

Original entry on oeis.org

1, 6, 12, 24, 48, 60, 96, 120, 180, 240, 360, 480, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 4320, 5040, 7560, 8640, 10080, 15120, 20160, 25200, 30240, 40320, 45360, 50400, 55440, 60480, 75600, 90720, 100800, 110880, 120960, 151200, 181440, 221760
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A330997 in lacking 64.

Examples

			Strict factorizations of the initial terms:
  ()  (6)    (12)   (24)     (48)     (60)      (96)      (120)
      (2*3)  (2*6)  (3*8)    (6*8)    (2*30)    (2*48)    (2*60)
             (3*4)  (4*6)    (2*24)   (3*20)    (3*32)    (3*40)
                    (2*12)   (3*16)   (4*15)    (4*24)    (4*30)
                    (2*3*4)  (4*12)   (5*12)    (6*16)    (5*24)
                             (2*3*8)  (6*10)    (8*12)    (6*20)
                             (2*4*6)  (2*5*6)   (2*6*8)   (8*15)
                                      (3*4*5)   (3*4*8)   (10*12)
                                      (2*3*10)  (2*3*16)  (3*5*8)
                                                (2*4*12)  (4*5*6)
                                                          (2*3*20)
                                                          (2*4*15)
                                                          (2*5*12)
                                                          (2*6*10)
                                                          (3*4*10)
                                                          (2*3*4*5)
		

Crossrefs

A subset of A330997.
All terms belong to A025487.
This is the strict version of highly factorable numbers A033833.
The corresponding records are A331232(n) = A045778(a(n)).
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).
The least number with A045779(n) strict factorizations is A045780(n)

Programs

  • Mathematica
    nn=1000;
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    qv=Table[Length[strfacs[n]],{n,nn}];
    Table[Position[qv,i][[1,1]],{i,Union[qv//.{foe___,x_,y_,afe___}/;x>y:>{foe,x,afe}]}]

Extensions

a(37) and beyond from Giovanni Resta, Jan 17 2020

A331232 Record numbers of factorizations into distinct factors > 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 10, 16, 18, 25, 34, 38, 57, 59, 67, 70, 91, 100, 117, 141, 161, 193, 253, 296, 306, 426, 552, 685, 692, 960, 1060, 1067, 1216, 1220, 1589, 1591, 1912, 2029, 2157, 2524, 2886, 3249, 3616, 3875, 4953, 5147, 5285, 5810, 6023, 6112, 6623, 8129
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Examples

			Representatives for the initial records and their strict factorizations:
  ()  (6)    (12)   (24)     (48)     (60)      (96)      (120)
      (2*3)  (2*6)  (3*8)    (6*8)    (2*30)    (2*48)    (2*60)
             (3*4)  (4*6)    (2*24)   (3*20)    (3*32)    (3*40)
                    (2*12)   (3*16)   (4*15)    (4*24)    (4*30)
                    (2*3*4)  (4*12)   (5*12)    (6*16)    (5*24)
                             (2*3*8)  (6*10)    (8*12)    (6*20)
                             (2*4*6)  (2*5*6)   (2*6*8)   (8*15)
                                      (3*4*5)   (3*4*8)   (10*12)
                                      (2*3*10)  (2*3*16)  (3*5*8)
                                                (2*4*12)  (4*5*6)
                                                          (2*3*20)
                                                          (2*4*15)
                                                          (2*5*12)
                                                          (2*6*10)
                                                          (3*4*10)
                                                          (2*3*4*5)
		

Crossrefs

The non-strict version is A272691.
The first appearance of a(n) in A045778 is at index A331200(n).
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).
The least number with A045779(n) strict factorizations is A045780(n).

Programs

  • Mathematica
    nn=1000;
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    qv=Table[Length[strfacs[n]],{n,nn}];
    Union[qv//.{foe___,x_,y_,afe___}/;x>y:>{foe,x,afe}]
  • Python
    def fact(num):
        ret = []
        temp = num
        div = 2
        while temp > 1:
            while temp % div == 0:
                ret.append(div)
                temp //= div
            div += 1
        return ret
    def all_partitions(lst):
        if lst:
            x = lst[0]
            for partition in all_partitions(lst[1:]):
                yield [x] + partition
                for i, _ in enumerate(partition):
                    partition[i] *= x
                    yield partition
                    partition[i] //= x
        else:
            yield []
    best = 0
    terms = [0]
    q = 2
    while len(terms) < 100:
        total_set = set()
        factors = fact(q)
        total_set = set(tuple(sorted(x)) for x in all_partitions(factors) if len(x) == len(set(x)))
        if len(total_set) > best:
            best = len(total_set)
            terms.append(best)
            print(q,best)
        q += 2#only check evens
    print(terms)
    #  David Consiglio, Jr., Jan 14 2020

Formula

a(n) = A045778(A331200(n)).

Extensions

a(26)-a(37) from David Consiglio, Jr., Jan 14 2020
a(38) and beyond from Giovanni Resta, Jan 17 2020
Showing 1-10 of 15 results. Next