cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A033833 Highly factorable numbers: numbers with a record number of proper factorizations.

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 36, 48, 72, 96, 120, 144, 192, 216, 240, 288, 360, 432, 480, 576, 720, 960, 1080, 1152, 1440, 2160, 2880, 4320, 5040, 5760, 7200, 8640, 10080, 11520, 12960, 14400, 15120, 17280, 20160, 25920, 28800, 30240, 34560
Offset: 1

Views

Author

Keywords

Comments

First differs from A045783 and A330972 in lacking 60.
Indices of records in A028422 or A001055.

Examples

			From _Gus Wiseman_, Jan 13 2020: (Start)
Factorizations of the initial terms:
  ()  (4)    (8)      (12)     (16)       (24)       (36)       (48)
      (2*2)  (2*4)    (2*6)    (2*8)      (3*8)      (4*9)      (6*8)
             (2*2*2)  (3*4)    (4*4)      (4*6)      (6*6)      (2*24)
                      (2*2*3)  (2*2*4)    (2*12)     (2*18)     (3*16)
                               (2*2*2*2)  (2*2*6)    (3*12)     (4*12)
                                          (2*3*4)    (2*2*9)    (2*3*8)
                                          (2*2*2*3)  (2*3*6)    (2*4*6)
                                                     (3*3*4)    (3*4*4)
                                                     (2*2*3*3)  (2*2*12)
                                                                (2*2*2*6)
                                                                (2*2*3*4)
                                                                (2*2*2*2*3)
(End)
		

Crossrefs

All terms belong to A025487 as well as to A330972.
The corresponding records are A272691.
The strict version is A331200.
Factorizations are A001055, with image A045782 and complement A330976.

Programs

  • Mathematica
    nn=100;
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    qv=Table[Length[facs[n]],{n,nn}];
    Table[Position[qv,i][[1,1]],{i,qv//.{foe___,x_,y_,afe___}/;x>=y:>{foe,x,afe}}] (* Gus Wiseman, Jan 13 2020 *)

Formula

A001055(a(n)) = A272691(n). - Gus Wiseman, Jan 13 2020

A331232 Record numbers of factorizations into distinct factors > 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 10, 16, 18, 25, 34, 38, 57, 59, 67, 70, 91, 100, 117, 141, 161, 193, 253, 296, 306, 426, 552, 685, 692, 960, 1060, 1067, 1216, 1220, 1589, 1591, 1912, 2029, 2157, 2524, 2886, 3249, 3616, 3875, 4953, 5147, 5285, 5810, 6023, 6112, 6623, 8129
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Examples

			Representatives for the initial records and their strict factorizations:
  ()  (6)    (12)   (24)     (48)     (60)      (96)      (120)
      (2*3)  (2*6)  (3*8)    (6*8)    (2*30)    (2*48)    (2*60)
             (3*4)  (4*6)    (2*24)   (3*20)    (3*32)    (3*40)
                    (2*12)   (3*16)   (4*15)    (4*24)    (4*30)
                    (2*3*4)  (4*12)   (5*12)    (6*16)    (5*24)
                             (2*3*8)  (6*10)    (8*12)    (6*20)
                             (2*4*6)  (2*5*6)   (2*6*8)   (8*15)
                                      (3*4*5)   (3*4*8)   (10*12)
                                      (2*3*10)  (2*3*16)  (3*5*8)
                                                (2*4*12)  (4*5*6)
                                                          (2*3*20)
                                                          (2*4*15)
                                                          (2*5*12)
                                                          (2*6*10)
                                                          (3*4*10)
                                                          (2*3*4*5)
		

Crossrefs

The non-strict version is A272691.
The first appearance of a(n) in A045778 is at index A331200(n).
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).
The least number with A045779(n) strict factorizations is A045780(n).

Programs

  • Mathematica
    nn=1000;
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    qv=Table[Length[strfacs[n]],{n,nn}];
    Union[qv//.{foe___,x_,y_,afe___}/;x>y:>{foe,x,afe}]
  • Python
    def fact(num):
        ret = []
        temp = num
        div = 2
        while temp > 1:
            while temp % div == 0:
                ret.append(div)
                temp //= div
            div += 1
        return ret
    def all_partitions(lst):
        if lst:
            x = lst[0]
            for partition in all_partitions(lst[1:]):
                yield [x] + partition
                for i, _ in enumerate(partition):
                    partition[i] *= x
                    yield partition
                    partition[i] //= x
        else:
            yield []
    best = 0
    terms = [0]
    q = 2
    while len(terms) < 100:
        total_set = set()
        factors = fact(q)
        total_set = set(tuple(sorted(x)) for x in all_partitions(factors) if len(x) == len(set(x)))
        if len(total_set) > best:
            best = len(total_set)
            terms.append(best)
            print(q,best)
        q += 2#only check evens
    print(terms)
    #  David Consiglio, Jr., Jan 14 2020

Formula

a(n) = A045778(A331200(n)).

Extensions

a(26)-a(37) from David Consiglio, Jr., Jan 14 2020
a(38) and beyond from Giovanni Resta, Jan 17 2020

A331201 Numbers k such that the number of factorizations of k into distinct factors > 1 is a prime number.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 74, 75, 76, 77, 78, 80, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 98, 99, 100, 102
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A080257 in lacking 60.

Examples

			Strict factorizations of selected terms:
  (6)    (12)   (24)     (48)     (216)
  (2*3)  (2*6)  (3*8)    (6*8)    (3*72)
         (3*4)  (4*6)    (2*24)   (4*54)
                (2*12)   (3*16)   (6*36)
                (2*3*4)  (4*12)   (8*27)
                         (2*3*8)  (9*24)
                         (2*4*6)  (12*18)
                                  (2*108)
                                  (3*8*9)
                                  (4*6*9)
                                  (2*3*36)
                                  (2*4*27)
                                  (2*6*18)
                                  (2*9*12)
                                  (3*4*18)
                                  (3*6*12)
                                  (2*3*4*9)
		

Crossrefs

The version for strict integer partitions is A035359.
The version for integer partitions is A046063.
The version for set partitions is A051130.
The non-strict version is A330991.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
Numbers whose number of strict factorizations is odd are A331230.
Numbers whose number of strict factorizations is even are A331231.
The least number with n strict factorizations is A330974(n).

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],PrimeQ[Length[strfacs[#]]]&]

A272691 Number of factorizations of the highly factorable numbers A033833.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 12, 16, 19, 21, 29, 30, 31, 38, 47, 52, 57, 64, 77, 98, 105, 109, 118, 171, 212, 289, 382, 392, 467, 484, 662, 719, 737, 783, 843, 907, 1097, 1261, 1386, 1397, 1713, 1768, 2116, 2179, 2343, 3079, 3444, 3681, 3930, 5288, 5413, 5447
Offset: 1

Views

Author

N. J. A. Sloane, Jun 02 2016, following a suggestion from George Beck

Keywords

Comments

These are defined as record numbers of factorizations (A001055). - Gus Wiseman, Jan 13 2020

Examples

			From _Gus Wiseman_, Jan 13 2020: (Start)
The a(1) = 1 through a(8) = 12 factorizations of highly factorable numbers:
  ()  (4)    (8)      (12)     (16)       (24)       (36)       (48)
      (2*2)  (2*4)    (2*6)    (2*8)      (3*8)      (4*9)      (6*8)
             (2*2*2)  (3*4)    (4*4)      (4*6)      (6*6)      (2*24)
                      (2*2*3)  (2*2*4)    (2*12)     (2*18)     (3*16)
                               (2*2*2*2)  (2*2*6)    (3*12)     (4*12)
                                          (2*3*4)    (2*2*9)    (2*3*8)
                                          (2*2*2*3)  (2*3*6)    (2*4*6)
                                                     (3*3*4)    (3*4*4)
                                                     (2*2*3*3)  (2*2*12)
                                                                (2*2*2*6)
                                                                (2*2*3*4)
                                                                (2*2*2*2*3)
(End)
		

Crossrefs

The strict version is A331232.
Factorizations are A001055, with image A045782 and complement A330976.
Highly factorable numbers are A033833, with strict version A331200.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[facs[n]],{n,100}]//.{foe___,x_,y_,afe___}/;x>=y:>{foe,x,afe} (* Gus Wiseman, Jan 13 2020 *)

Formula

a(n) = A001055(A033833(n)).
a(n) = A033834(n) + 1. - Amiram Eldar, Jun 07 2019

A331230 Numbers k such that the number of factorizations of k into distinct factors > 1 is odd.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 17, 18, 19, 20, 23, 24, 25, 28, 29, 30, 31, 32, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 83, 84, 88, 89, 90, 92, 97, 98, 99, 100, 101, 102
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A319237 in lacking 300.

Crossrefs

The version for strict integer partitions is A001318.
The version for integer partitions is A052002.
The version for set partitions appears to be A032766.
The non-strict version is A331050.
The version for primes (instead of odds) is A331201.
The even version is A331231.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],OddQ[Length[strfacs[#]]]&]

A331231 Numbers k such that the number of factorizations of k into distinct factors > 1 is even.

Original entry on oeis.org

6, 8, 10, 14, 15, 16, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 64, 65, 69, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 96, 106, 111, 115, 118, 119, 120, 122, 123, 125, 129, 133, 134, 141, 142, 143, 144, 145, 146, 155, 158, 159, 160, 161, 166
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A319238 in having 300.

Crossrefs

The version for integer partitions is A001560.
The version for strict integer partitions is A090864.
The version for set partitions appears to be A016789.
The non-strict version is A331051.
The version for primes (instead of evens) is A331201.
The odd version is A331230.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],EvenQ[Length[strfacs[#]]]&]
Showing 1-6 of 6 results.