cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A033833 Highly factorable numbers: numbers with a record number of proper factorizations.

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 36, 48, 72, 96, 120, 144, 192, 216, 240, 288, 360, 432, 480, 576, 720, 960, 1080, 1152, 1440, 2160, 2880, 4320, 5040, 5760, 7200, 8640, 10080, 11520, 12960, 14400, 15120, 17280, 20160, 25920, 28800, 30240, 34560
Offset: 1

Views

Author

Keywords

Comments

First differs from A045783 and A330972 in lacking 60.
Indices of records in A028422 or A001055.

Examples

			From _Gus Wiseman_, Jan 13 2020: (Start)
Factorizations of the initial terms:
  ()  (4)    (8)      (12)     (16)       (24)       (36)       (48)
      (2*2)  (2*4)    (2*6)    (2*8)      (3*8)      (4*9)      (6*8)
             (2*2*2)  (3*4)    (4*4)      (4*6)      (6*6)      (2*24)
                      (2*2*3)  (2*2*4)    (2*12)     (2*18)     (3*16)
                               (2*2*2*2)  (2*2*6)    (3*12)     (4*12)
                                          (2*3*4)    (2*2*9)    (2*3*8)
                                          (2*2*2*3)  (2*3*6)    (2*4*6)
                                                     (3*3*4)    (3*4*4)
                                                     (2*2*3*3)  (2*2*12)
                                                                (2*2*2*6)
                                                                (2*2*3*4)
                                                                (2*2*2*2*3)
(End)
		

Crossrefs

All terms belong to A025487 as well as to A330972.
The corresponding records are A272691.
The strict version is A331200.
Factorizations are A001055, with image A045782 and complement A330976.

Programs

  • Mathematica
    nn=100;
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    qv=Table[Length[facs[n]],{n,nn}];
    Table[Position[qv,i][[1,1]],{i,qv//.{foe___,x_,y_,afe___}/;x>=y:>{foe,x,afe}}] (* Gus Wiseman, Jan 13 2020 *)

Formula

A001055(a(n)) = A272691(n). - Gus Wiseman, Jan 13 2020

A331232 Record numbers of factorizations into distinct factors > 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 10, 16, 18, 25, 34, 38, 57, 59, 67, 70, 91, 100, 117, 141, 161, 193, 253, 296, 306, 426, 552, 685, 692, 960, 1060, 1067, 1216, 1220, 1589, 1591, 1912, 2029, 2157, 2524, 2886, 3249, 3616, 3875, 4953, 5147, 5285, 5810, 6023, 6112, 6623, 8129
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Examples

			Representatives for the initial records and their strict factorizations:
  ()  (6)    (12)   (24)     (48)     (60)      (96)      (120)
      (2*3)  (2*6)  (3*8)    (6*8)    (2*30)    (2*48)    (2*60)
             (3*4)  (4*6)    (2*24)   (3*20)    (3*32)    (3*40)
                    (2*12)   (3*16)   (4*15)    (4*24)    (4*30)
                    (2*3*4)  (4*12)   (5*12)    (6*16)    (5*24)
                             (2*3*8)  (6*10)    (8*12)    (6*20)
                             (2*4*6)  (2*5*6)   (2*6*8)   (8*15)
                                      (3*4*5)   (3*4*8)   (10*12)
                                      (2*3*10)  (2*3*16)  (3*5*8)
                                                (2*4*12)  (4*5*6)
                                                          (2*3*20)
                                                          (2*4*15)
                                                          (2*5*12)
                                                          (2*6*10)
                                                          (3*4*10)
                                                          (2*3*4*5)
		

Crossrefs

The non-strict version is A272691.
The first appearance of a(n) in A045778 is at index A331200(n).
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).
The least number with A045779(n) strict factorizations is A045780(n).

Programs

  • Mathematica
    nn=1000;
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    qv=Table[Length[strfacs[n]],{n,nn}];
    Union[qv//.{foe___,x_,y_,afe___}/;x>y:>{foe,x,afe}]
  • Python
    def fact(num):
        ret = []
        temp = num
        div = 2
        while temp > 1:
            while temp % div == 0:
                ret.append(div)
                temp //= div
            div += 1
        return ret
    def all_partitions(lst):
        if lst:
            x = lst[0]
            for partition in all_partitions(lst[1:]):
                yield [x] + partition
                for i, _ in enumerate(partition):
                    partition[i] *= x
                    yield partition
                    partition[i] //= x
        else:
            yield []
    best = 0
    terms = [0]
    q = 2
    while len(terms) < 100:
        total_set = set()
        factors = fact(q)
        total_set = set(tuple(sorted(x)) for x in all_partitions(factors) if len(x) == len(set(x)))
        if len(total_set) > best:
            best = len(total_set)
            terms.append(best)
            print(q,best)
        q += 2#only check evens
    print(terms)
    #  David Consiglio, Jr., Jan 14 2020

Formula

a(n) = A045778(A331200(n)).

Extensions

a(26)-a(37) from David Consiglio, Jr., Jan 14 2020
a(38) and beyond from Giovanni Resta, Jan 17 2020
Showing 1-2 of 2 results.