A033859 Numbers k such that A033831(k) = A034444(k) where A034444(k) = number of unitary divisors of k.
8, 16, 24, 27, 36, 40, 54, 81, 88, 100, 104, 120, 125, 135, 136, 152, 168, 184, 189, 196, 225, 232, 248, 250, 264, 270, 272, 280, 296, 297, 312, 328, 343, 344, 351, 375, 376, 378, 408, 424, 440, 441, 456, 459, 472, 484, 488, 513, 520, 536, 568, 584, 594, 616
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): for n from 1 to 1200 do it := divisors(n): count := 0: for i from 1 to nops(it) do if it[i]>=3 and 1<=n/it[i] and n/it[i]<=(it[i]-2) then count := count+1 fi:od: if count=2^nops(ifactors(n)[2]) then printf(`%d,`,n) fi; od:
-
Mathematica
j[n_] := DivisorSum[n, 1&, # > 2 && n/# < #-1 &]; Select[Range[1000], j[#] == 2^PrimeNu[#] &] (* Amiram Eldar, Jun 11 2019 *)
Extensions
More terms from James Sellers, Jun 20 2000