A033878 Triangular array associated with Schroeder numbers.
1, 1, 1, 1, 3, 2, 1, 5, 10, 6, 1, 7, 22, 38, 22, 1, 9, 38, 98, 158, 90, 1, 11, 58, 194, 450, 698, 394, 1, 13, 82, 334, 978, 2126, 3218, 1806, 1, 15, 110, 526, 1838, 4942, 10286, 15310, 8558, 1, 17, 142, 778, 3142, 9922, 25150, 50746, 74614, 41586
Offset: 0
Examples
This triangle reads: 1 1 1 1 3 2 1 5 10 6 1 7 22 38 22 1 9 38 98 158 90 1 11 58 194 450 698 394 1 13 82 334 978 2126 3218 1806 1 15 110 526 1838 4942 10286 15310 558 1 17 142 778 3142 9922 25150 50746 74614 41586
Links
- E. Pergola and R. A. Sulanke, Schroeder Triangles, Paths and Parallelogram Polyominoes, J. Integer Sequences, 1 (1998), #98.1.7.
Programs
-
PARI
lgs(n) = if( n<1, 1, sum( k=0, n, 2^k * binomial( n, k) * binomial( n, k-1)) / n) /* A006318 */ T(n, k) = if (k>n, 0, if (k==0, 1, if (n==0, 1, if ((n==k), lgs(n-1), T(n,k-1) + T(n-1,k-1) + T(n-1,k))))); tabl(nn) = {for (n=0, nn, for (m=0, n, print1(T(n, m), ", ");); print(););} \\ Michel Marcus, May 02 2015
-
Python
from functools import cache @cache def T(n: int, k: int) -> int: if n < 0: return 0 if k == 0: return 1 if n == k: return sum(T(n-1, k) for k in range(n)) return T(n, k-1) + T(n-1, k-1) + T(n-1, k) for n in range(10): print([T(n, k) for k in range(n+1)]) # Peter Luschny, Dec 26 2024
Extensions
Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 23 2003
Comments