cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A096293 Number of iterations of n -> n + (sum of squares of digits of n) needed for the trajectory of n to join the trajectory of A033936.

Original entry on oeis.org

0, 0, 8, 76, 72, 0, 330, 8, 73, 77, 76, 7, 75, 73, 72, 66, 6, 62, 25, 75, 67, 72, 74, 74, 8, 66, 38, 70, 74, 71, 72, 62, 72, 70, 61, 73, 7, 75, 70, 330, 71, 0, 329, 73, 61, 62, 73, 71, 72, 74, 71, 73, 65, 7, 74, 329, 73, 70, 69, 70, 62, 0, 3, 39, 60, 65, 5, 328, 60, 72, 75, 7, 73
Offset: 1

Views

Author

Jason Earls, Jun 24 2004

Keywords

Comments

Conjecture: For any positive integer starting value n, iterations of n -> n + (sum of squares of digits of n) will eventually join A033936 (verified for all n up to 20000).

Examples

			a(3)=8 because the trajectory for 1 (sequence A033936) starts
1->2->6->42->62->102->107->157->232->249->350->384->473...
and the trajectory for 3 starts
3->12->17->67->152->182->251->281->350->384->473...
so the sequence beginning with 3 joins A033936 after 8 steps.
		

A258881 a(n) = n + the sum of the squared digits of n.

Original entry on oeis.org

0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 11, 13, 17, 23, 31, 41, 53, 67, 83, 101, 24, 26, 30, 36, 44, 54, 66, 80, 96, 114, 39, 41, 45, 51, 59, 69, 81, 95, 111, 129, 56, 58, 62, 68, 76, 86, 98, 112, 128, 146, 75, 77, 81, 87, 95, 105, 117, 131, 147, 165, 96, 98, 102
Offset: 0

Views

Author

M. F. Hasler, Jul 19 2015

Keywords

Crossrefs

Cf. A003132, A062028, A259391, A259567, A033936, A076161 (indices of primes), A329179 (indices of squares).

Programs

  • Mathematica
    Total[Flatten@ {#, IntegerDigits[#]^2}] & /@ Range[0, 61] (* Michael De Vlieger, Jul 20 2015 *)
    Table[n+Total[IntegerDigits[n]^2],{n,0,100}] (* Harvey P. Dale, Nov 27 2022 *)
  • PARI
    A258881(n)=n+norml2(digits(n))
    
  • Python
    def ssd(n): return sum(int(d)**2 for d in str(n))
    def a(n): return n + ssd(n)
    print([a(n) for n in range(63)]) # Michael S. Branicky, Jan 30 2021

A259567 Number of subsequent numbers, starting with n, for which A258881(x) = x + (sum of squares of digits of x) is prime.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

M. F. Hasler, Jul 19 2015

Keywords

Comments

This sequence is motivated by sequence A259391 and the "Prime puzzle 776".

Examples

			For n = 0, A258881(0) = 0 is not prime.
For n = 1, A258881(1) = 1+1 = 2 is prime, but A258881(2) = 2+4 is not prime, therefore a(1)=1.
For n = 10, A258881(10) = 10 + 1^2 + 0^2 = 11, A258881(11) = 11 + 1^2 + 1^2 = 13, A258881(12) = 12 + 1^2 + 2^2 = 17, ..., A258881(19) = 19 + 1^2 + 9^2 = 101 are all prime, but A258881(20) = 20 + 2^2 + 0^2 is not prime, therefore a(10) = 10.
The next value of 10 occurs at index n = 1761702690, see A259391.
		

Crossrefs

Programs

  • PARI
    a(n)=for(m=n,n+9e9,isprime(A258881(m))||return(m-n))

Formula

If a(n) > 0, then a(n+1) = a(n)-1.
a(n) > 0 iff n is in A076161.
Showing 1-3 of 3 results.