cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A034030 Imprimitively represented by x^2+2y^2.

Original entry on oeis.org

0, 4, 8, 9, 12, 16, 18, 24, 25, 27, 32, 36, 44, 48, 49, 50, 54, 64, 68, 72, 75, 76, 81, 88, 96, 98, 99, 100, 108, 121, 128, 132, 136, 144, 147, 150, 152, 153, 162, 164, 169, 171, 172, 176, 192, 196, 198, 200, 204, 216, 225, 228
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    # Maple code for A002479, A057127, A034030-A034034 from N. J. A. Sloane, Apr 30 2015
    lis:={}; lisP:={}; lisI:={};
    M:=50; M2:=M^2;
    for x from 0 to M do
       x2:=x^2;
    for y from 0 to M do
       N:=x2+2*y^2;
    if N <= M2 then
       if gcd(x,y) = 1 then lisP:={op(lisP),N}; else lisI:={op(lisI),N} fi;
       lis:={op(lis),N};
    fi;
    od: od:
    lprint("lis");
    Lis:=sort(convert(lis,list));
    lprint("lisP");
    LisP:=sort(convert(lisP,list));
    lprint("lisI");
    LisI:=sort(convert(lisI,list));
    lprint("lisPnotI");
    LisPnotI:=sort(convert(lisP minus lisI, list));
    lprint("lisInotP");
    LisInotP:=sort(convert(lisI minus lisP,list));
    lprint("lisIandP");
    LisIandP:=sort(convert(lisI intersect lisP,list));
    lprint("liseither");
    Liseither:=sort(convert(lis minus (lisI intersect lisP),list));

Extensions

Corrected by N. J. A. Sloane, Apr 30 2015

A034031 Numbers that are primitively but not imprimitively represented by x^2+2y^2.

Original entry on oeis.org

1, 2, 3, 6, 11, 17, 19, 22, 33, 34, 38, 41, 43, 51, 57, 59, 66, 67, 73, 82, 83, 86, 89, 97, 102, 107, 113, 114, 118, 123, 129, 131, 134, 137, 139, 146, 163, 166, 177, 178, 179, 187, 193, 194, 201, 209, 211, 214, 219, 226, 227
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

Corrected by N. J. A. Sloane, Apr 30 2015

A034033 Both primitively and imprimitively represented by x^2+2y^2.

Original entry on oeis.org

9, 18, 27, 54, 81, 99, 121, 153, 162, 171, 198, 242, 243, 289, 297, 306, 342, 361, 363, 369, 387, 459, 486, 513, 531, 578, 594, 603, 657, 722, 726, 729, 738, 747, 774, 801, 867, 873, 891, 918, 963, 1017, 1026, 1062, 1083, 1089
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

Corrected by N. J. A. Sloane, Apr 30 2015

A034032 Imprimitively but not primitively represented by x^2+2y^2.

Original entry on oeis.org

0, 4, 8, 12, 16, 24, 25, 32, 36, 44, 48, 49, 50, 64, 68, 72, 75, 76, 88, 96, 98, 100, 108, 128, 132, 136, 144, 147, 150, 152, 164, 169, 172, 176, 192, 196, 200, 204, 216, 225, 228, 236, 256, 264, 268, 272, 275, 288, 292, 294
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

Corrected by N. J. A. Sloane, Apr 30 2015
Showing 1-4 of 4 results.