A034093 Number of near-repunit primes that can be formed from (10^k - 1)/9 by changing just one digit from 1 to 0.
0, 0, 1, 0, 1, 1, 0, 2, 1, 0, 0, 5, 0, 0, 0, 0, 2, 5, 0, 4, 0, 0, 0, 3, 0, 1, 0, 0, 1, 2, 0, 4, 1, 0, 1, 2, 0, 2, 1, 0, 0, 7, 0, 4, 0, 0, 0, 2, 0, 2, 1, 0, 1, 3, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 1, 3, 0, 1, 0, 0, 1, 3, 0, 3, 0, 0, 1, 1, 0, 1, 0, 0, 0, 2, 0, 3, 0, 0
Offset: 1
Examples
a(12) = 5 because from (10^12 - 1)/9 = 111111111111, by changing just one digit from 1 to 0, out of the eleven candidates, 111111111101, 111111110111, 111111011111, 111011111111 and 101111111111 are primes.
References
- C. K. Caldwell and H. Dubner, The near repunits primes, J. Rec. Math., Vol. 27(1), 1995, pp. 35-41.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..2000
- Chris Caldwell, Below are all of the 12-digit Near-Repunit primes.
- Chris Caldwell, Repunits.
Programs
-
Mathematica
a = {}; Do[ p = IntegerDigits[ (10^n - 1)/9 ]; c = 0; Do[ If[ q = FromDigits[ ReplacePart[p, 0, i]]; PrimeQ[q], c++ ], {i, 2, n} ]; a = Append[a, c], {n, 1, 100} ]; a (* Robert G. Wilson v, Nov 19 2001 *)
-
PARI
a(n)=sum(i=1,n-2,ispseudoprime(10^n\9-10^i)) \\ Charles R Greathouse IV, May 01 2012
-
Python
from sympy import isprime def a(n): Rn = (10**n-1)//9 return sum(1 for i in range(n-1) if isprime(Rn-10**i)) print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Nov 04 2023
Extensions
More terms from Robert G. Wilson v, Nov 19 2001
Edited by N. J. A. Sloane, Oct 02 2008 at the suggestion of R. J. Mathar