cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034274 a(n)=f(n,n-1) where f is given in A034261.

Original entry on oeis.org

1, 5, 25, 119, 546, 2442, 10725, 46475, 199342, 848198, 3585946, 15080870, 63146500, 263432340, 1095517485, 4543460595, 18798494550, 77616288750, 319874637390, 1316106144210, 5407045011420, 22184521682700, 90910797617250, 372137346502974, 1521789223654476, 6217349014923452
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

From Peter Bala, Aug 19 2025: (Start)
a(n) = (n^2 + 1)/2 * A000108(n).
a(n) = (1/2) * A180266(n+1).
a(n) = Sum_{k = 1..n} k^2/(n+k-1) * binomial(n+k-1, k). Cf. Sum_{k = 1..n} k/(n+k-1) * binomial(n+k-1, k) = 1/2 * binomial(2*n, n) = 1/2 * A000984(n).
a(n) = 2*(n^2 + 1)*(2*n - 1)/((n + 1)*(n^2 - 2*n + 2)) * a(n-1) with a(1) = 1. (End)
a(n) ~ 2^(2*n-1) * sqrt(n/Pi). - Amiram Eldar, Sep 04 2025

Extensions

Corrected and extended by N. J. A. Sloane, Apr 21 2000