A034587 Fibonacci iteration starting with (1, a(n)) leads to a "nine digits anagram".
718, 1790, 1993, 2061, 2259, 3888, 3960, 4004, 4396, 5093, 5832, 7031, 7310, 7712, 8039, 8955, 9236, 11598, 11742, 12312, 13295, 15095, 15432, 16044, 16355, 16472, 18109, 18559, 19144, 19950, 19968, 20116, 20180, 20494, 21170, 21376, 21998
Offset: 1
Examples
Denote by F(a,b) the Fibonacci-type sequence x(n+1) = x(n) + x(n-1) starting with x(0) = a, x(1) = b. Then F(1,21998) = (1, 21998, 21999, 43997, 65996, 109993, 175989, 285982, 461971, 747953, 1209924, 1957877, 3167801, 5125678, 8293479, 13419157, 21712636, 35131793, 56844429, 91976222, 148820651, 240796873, 389617524, ...) where a nine-digits anagram has been reached. The growth is roughly linear in three parts, with a slope of 700 up to a(292967) = 206993812, then an average slope of 1130 before it rises to (9.87e8 - 4.94e8)/2.05e5 ~ 2400 for 546211 <= n <= 750767 (cf. formula & comments): a(100) = 71960, a(200) = 149540, a(500) = 351868, a(1000) = 649921, a(2000) = 1400539, a(5000) = 3209798, a(10^4) = 6595301, a(2e4) = 13351498, a(5e4) = 32441506, a(10^5) = 67090523, a(2e5) = 134759627, a(3e5) = 214973567, a(4e5) = 327136594, a(5e5) = 439256717. - _M. F. Hasler_, Jan 07 2020
Links
- M. F. Hasler, Table of n, a(n) for n = 1..10000, Jan 06 2020. (Full list of 750767 terms is available on request.)
- Patrick De Geest, Nine Digits Digressions
- M. F. Hasler, Graph of A034587, n = 1..750767 (full sequence), Jan 10 2020
- M. F. Hasler, Slope of A034587, averaged over n +- 10 sqrt(n), Jan 10 2020
Programs
-
PARI
A034587=select( {is_A034587(n,s=1,L=[1..9])=while( 123456789 > n=s+s=n,); n<1e9 && until( 987654321 < n=s+s=n, Set(digits(n))==L&&return(n))}, [1..22222]) \\ Function is_A034587 returns the 9-digit anagram if one is reached; null == false == 0 else. nxt_A034587(n)={until(is_A034587(n+=1),);n} \\ Returns next larger term A034587(n)={if(n>546210, A050289(n-387887)-1, #A034587>=n, A034587[n], A034587=concat( A034587, vector(n-#A034587,i, n=nxt_A034587(if(i>1,n,A034587[#A034587])))); n)} \\ Uses the two functions above. Could use Vecsmall(...) in definition of A034587 and vectorsmall in A034587(n) to reduce memory. \\ M. F. Hasler, Jan 06 2020 and Jan 07 2020
-
Python
def ok(n): f, g = n, n+1 while g < 10**9: if g > 123456788 and "".join(sorted(str(g))) == "123456789": return True f, g = g, f+g return False print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Feb 18 2024
Formula
a(n) = A050289(m) with n = 387887 + m for 158324 <= m <= 9! or 546211 <= n <= 750767 = total number of terms in this sequence. - M. F. Hasler, Jan 07 2020
Extensions
Edited and offset changed to 1 by M. F. Hasler, Jan 06 2020
Results confirmed by Giovanni Resta, Jan 07 2020
Comments