A034343 Number of inequivalent binary linear codes of length n and any dimension k <= n containing no column of zeros.
1, 2, 4, 8, 16, 36, 80, 194, 506, 1449, 4631, 17106, 74820, 404283, 2815595, 26390082, 344330452, 6365590987, 167062019455, 6182453531508, 319847262335488, 22968149462624180, 2277881694784784852
Offset: 1
Keywords
References
- R. L. E. Schwarzenberger, N-Dimensional Crystallography. Pitman, London, 1980, pages 64 and 65.
- M. Wild, Enumeration of binary and ternary matroids and other applications of the Brylawski-Lucas Theorem, Preprint No. 1693, Tech. Hochschule Darmstadt, 1994
Links
- Discrete algorithms at the University of Bayreuth, Symmetrica. [This package was used to compute T_{nk2} using the cycle index of PGL_k(2). Here a(n) = T_{nn2}.]
- Harald Fripertinger, Isometry Classes of Codes.
- Harald Fripertinger, Tnk2: Number of the isometry classes of all binary (n,r)-codes for 1 <= r <= k without zero-columns. [This is a rectangular array whose main diagonal is a(n).]
- Harald Fripertinger, Enumeration of isometry classes of linear (n,k)-codes over GF(q) in SYMMETRICA, Bayreuther Mathematische Schriften 49 (1995), 215-223. [See pp. 216-218. A C-program is given for calculating T_{nk2} in Symmetrica. Here a(n) = T_{nn2}.]
- Harald Fripertinger, Cycle of indices of linear, affine, and projective groups, Linear Algebra and its Applications 263 (1997), 133-156. [See p. 152 for the computation of T_{nk2}.]
- H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [The notation for A076832(n,k) is T_{nk2}. Here a(n) = A076832(n,k) = T_{nn2}.]
- R. L. E. Schwarzenberger, Crystallography in spaces of arbitrary dimension, Proc. Camb. Phil. Soc., 76(1) (1974), 23-32.
- David Slepian, Some further theory of group codes, Bell System Tech. J. 39(5) (1960), 1219-1252.
- David Slepian, Some further theory of group codes, Bell System Tech. J. 39(5) (1960), 1219-1252.
- Wikipedia, Cycle index.
- Wikipedia, Projective linear group.
- Index entries for sequences related to binary linear codes
Formula
a(n) = A076832(n,n). - Petros Hadjicostas, Sep 30 2019
Comments