A034345 Number of binary [ n,4 ] codes without 0 columns.
0, 0, 0, 1, 4, 11, 27, 63, 134, 276, 544, 1048, 1956, 3577, 6395, 11217, 19307, 32685, 54413, 89225, 144144, 229647, 360975, 560259, 858967, 1301757, 1950955, 2893102, 4246868, 6174084, 8892966, 12696295, 17973092, 25237467, 35163431, 48629902, 66774760, 91063984
Offset: 1
Keywords
Links
- Discrete algorithms at the University of Bayreuth, Symmetrica.
- Harald Fripertinger, Isometry Classes of Codes.
- Harald Fripertinger, Snk2: Number of the isometry classes of all binary (n,k)-codes without zero-columns. [See column k=4.]
- H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [Here a(n) = S_{n,4,2}.]
- Petros Hadjicostas, Generating function for a(n).
- Petr Lisonek, Combinatorial families enumerated by quasi-polynomials, J. Combin. Theory Ser. A 114(4) (2007), 619-630. [See Section 5.]
- David Slepian, Some further theory of group codes, Bell System Tech. J. 39(5) (1960), 1219-1252.
- David Slepian, Some further theory of group codes, Bell System Tech. J. 39(5) (1960), 1219-1252.
- Wikipedia, Cycle index.
- Wikipedia, Projective linear group.
Crossrefs
Programs
-
Sage
# Fripertinger's method to find the g.f. of column k >= 2 of A034253 (for small k): def A034253col(k, length): G1 = PSL(k, GF(2)) G2 = PSL(k-1, GF(2)) D1 = G1.cycle_index() D2 = G2.cycle_index() f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1) f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2) f = f1 - f2 return f.taylor(x, 0, length).list() # For instance the Taylor expansion for column k = 4 (this sequence) gives print(A034253col(4, 30)) #
Extensions
More terms by Petros Hadjicostas, Oct 02 2019
Comments