cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034358 Number of binary [ n,4 ] codes.

Original entry on oeis.org

0, 0, 0, 1, 5, 16, 43, 106, 240, 516, 1060, 2108, 4064, 7641, 14036, 25253, 44560, 77245, 131658, 220883, 365027, 594674, 955649, 1515908, 2374875, 3676632, 5627587, 8520689, 12767557, 18941641, 27834607, 40530902, 58503994, 83741461, 118904892, 167534794, 234309554, 325373538, 448747606
Offset: 1

Views

Author

Keywords

Crossrefs

Column k=4 of both A034356 and A076831 (which are the same except for column k=0).
First differences give A034345.

Programs

  • Sage
    # Fripertinger's method to find the g.f. of column k >= 2 of A076831 or A034356 (for small k):
    def A076831col(k, length):
        G1 = PSL(k, GF(2))
        G2 = PSL(k-1, GF(2))
        D1 = G1.cycle_index()
        D2 = G2.cycle_index()
        f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
        f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
        f = (f1 - f2)/(1-x)
        return f.taylor(x, 0, length).list()
    # For instance the Taylor expansion for column k = 4 (this sequence) gives
    print(A076831col(4, 30)) # Petros Hadjicostas, Oct 07 2019

Extensions

More terms from Petros Hadjicostas, Oct 07 2019