A034388 Smallest prime containing at least n consecutive identical digits.
2, 11, 1117, 11113, 111119, 2999999, 11111117, 111111113, 1777777777, 11111111113, 311111111111, 2111111111111, 17777777777777, 222222222222227, 1333333333333333, 11111111111111119, 222222222222222221, 1111111111111111111, 1111111111111111111
Offset: 1
Examples
a(1) = 2 because this is the smallest prime. a(2) = 11 because this repunit with n=2 digits is prime. a(3) = 1117 is the smallest prime with 3 repeated digits. a(19) = (10^19-1)/9 = R(19) is again a repunit prime. Since all primes with 18 consecutive repeated digits have at least 19 digits, also a(18) = a(19). The same happens for a(22) = a(23).
Links
- M. F. Hasler and Robert Israel, Table of n, a(n) for n = 1..997 (1..200 from M. F. Hasler)
- Chai Wah Wu, Can machine learning identify interesting mathematics? An exploration using empirically observed laws, arXiv:1805.07431 [cs.LG], 2018.
Crossrefs
Programs
-
Maple
f:= proc(n) local d, k,x,y,z,xs,ys,zs,c,cands; for d from n do cands:= NULL; for k from 0 to d-n do if k = 0 then zs:= [0] else zs:= [seq(i,i=1..10^k-1,2)] fi; if d=n+k then xs:= [0]; ys:= [$1..9] else xs:= [$10^(d-k-n-1)..10^(d-k-n)-1]; ys:= [$0..9] fi; cands:= cands, seq(seq(seq(z + 10^k*y*(10^n-1)/9 + x*10^(k+n), x = xs),y=ys),z=zs); od; cands:= sort([cands]); for c in cands do if isprime(c) then return(c) fi od; od end proc: map(f, [$1..30]); # Robert Israel, Feb 26 2016
-
Mathematica
With[{s = Length /@ Split@ IntegerDigits@ # & /@ Prime@ Range[10^6]}, Prime@ Array[FirstPosition[s, #][[1]] &, Max@ Flatten@ s]] (* Michael De Vlieger, Aug 15 2018 *)
-
PARI
A034388(n)={for(d=0,9, my(L=[],k=0); for(a=0,10^d-1,a<10^k||k++; L=setunion(L,vector(10-!a,c,[a*10^n+10^n\9*(c-(a>0)),1])*10^(d-k)));for(i=1,#L,if(L[i][2]>1, L[i][1]+L[i][2]>L[i][1]=nextprime(L[i][1]),ispseudoprime(L[i][1]))&&return(L[i][1])))} \\ M. F. Hasler, Feb 28 2016
Extensions
Edited by M. F. Hasler, Feb 25 2016
Edited by Robert Israel, Feb 26 2016
Comments