A034470 Prime numbers using only the curved digits 0, 2, 3, 5, 6, 8 and 9.
2, 3, 5, 23, 29, 53, 59, 83, 89, 223, 229, 233, 239, 263, 269, 283, 293, 353, 359, 383, 389, 503, 509, 523, 563, 569, 593, 599, 653, 659, 683, 809, 823, 829, 839, 853, 859, 863, 883, 929, 953, 983, 2003, 2029, 2039, 2053, 2063, 2069, 2083, 2089, 2099, 2203
Offset: 1
Examples
From _K. D. Bajpai_, Sep 07 2014: (Start) 29 is prime and is composed only of the curved digits 2 and 9. 359 is prime and is composed only of the curved digits 3, 5 and 9. (End) 20235869 is the smallest instance using all curved digits. - _Michel Marcus_, Sep 07 2014
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 4: # to get all entries with at most N digits S:= {0,2,3,5,6,8,9}: T:= S: for j from 2 to N do T:= map(t -> seq(10*t+s,s=S),T); od: select(isprime,T); # In Maple 11 and earlier, uncomment the next line: # sort(convert(%,list)); # Robert Israel, Sep 07 2014
-
Mathematica
Select[Range[2222], PrimeQ[#] && Union[Join[IntegerDigits[#], {0, 2, 3, 5, 6, 8, 9}]] == {0, 2, 3, 5, 6, 8, 9} &] (* RGWv *) Select[Prime[Range[500]], Intersection[IntegerDigits[#], {1, 4, 7}] == {} &] (* K. D. Bajpai, Sep 07 2014 *)
Comments