A034659 a(n) = (11^n + 1)/2.
1, 6, 61, 666, 7321, 80526, 885781, 9743586, 107179441, 1178973846, 12968712301, 142655835306, 1569214188361, 17261356071966, 189874916791621, 2088624084707826, 22974864931786081, 252723514249646886, 2779958656746115741, 30579545224207273146, 336374997466280004601
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (12,-11).
Crossrefs
Cf. A034524.
Programs
-
PARI
a(n)=(11^n+1)/2 \\ Charles R Greathouse IV, Aug 23 2024
Formula
a(n) = 11*a(n-1) - 5 (with a(0)=1). - Vincenzo Librandi, Nov 17 2010
G.f.: (1-6*x)/((1-x)*(1-11*x)). - Colin Barker, May 04 2012
From Elmo R. Oliveira, Aug 23 2024: (Start)
E.g.f.: exp(6*x)*cosh(5*x).
a(n) = A034524(n)/2.
a(n) = 12*a(n-1) - 11*a(n-2) for n > 1. (End)
Extensions
a(18)-a(20) from Elmo R. Oliveira, Aug 23 2024