cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034789 Related to sextic factorial numbers A008542.

Original entry on oeis.org

1, 21, 546, 15561, 466830, 14471730, 458960580, 14801478705, 483514971030, 15955994043990, 530899438190940, 17785131179396490, 599222112044281740, 20287948650642110340, 689790254121831751560, 23539092421907508521985, 805867752326480585870310, 27668126163209166781547310
Offset: 1

Views

Author

Keywords

Comments

Convolution of A004993(n-1) with A025751(n), n >= 1.

Crossrefs

Programs

  • GAP
    List([1..20], n-> 6^(n-1)*Product([1..n], j-> 6*j-5)/Factorial(n) ); # G. C. Greubel, Nov 11 2019
  • Magma
    [6^(n-1)*(&*[6*j-5: j in [1..n]])/Factorial(n): n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    seq( 6^(n-1)*mul(6*j-5, j=1..n)/n!, n=1..20); # G. C. Greubel, Nov 11 2019
  • Mathematica
    Rest@ CoefficientList[Series[(-1 + (1 - 36 x)^(-1/6))/6, {x, 0, 16}], x] (* Michael De Vlieger, Oct 13 2019 *)
    Table[6^(2*n-1)*Pochhammer[1/6, n]/n!, {n, 20}] (* G. C. Greubel, Nov 11 2019 *)
  • PARI
    vector(20, n, 6^(n-1)*prod(j=1,n, 6*j-5)/n! ) \\ G. C. Greubel, Nov 11 2019
    
  • Sage
    [6^(n-1)*product( (6*j-5) for j in (1..n))/factorial(n) for n in (1..20)] # G. C. Greubel, Nov 11 2019
    

Formula

a(n) = 6^(n-1)*A008542(n)/n!.
G.f.: (-1+(1-36*x)^(-1/6))/6.
D-finite with recurrence: n*a(n) + 6*(-6*n+5)*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
a(n) ~ 6^(2*n-1) * n^(-5/6) / Gamma(1/6). - Amiram Eldar, Aug 18 2025