cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034795 a(n) is the least prime > a(n-1) that is a quadratic residue mod a(n-1).

Original entry on oeis.org

2, 3, 7, 11, 23, 29, 53, 59, 71, 73, 79, 83, 109, 113, 127, 131, 151, 167, 173, 179, 191, 193, 197, 223, 227, 239, 241, 251, 263, 269, 283, 293, 307, 311, 313, 317, 353, 383, 389, 409, 419, 431, 433, 439, 443, 457, 461, 467, 479, 487, 491, 503, 509, 523, 547
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A034795.

Programs

  • Maple
    f:= proc(p) local q;
       q:= p;
       do
         q:= nextprime(q);
         if NumberTheory:-QuadraticResidue(q,p)=1 then return q fi
       od
    end proc:
    A[1]:= 2: for i from 2 to 100 do A[i]:= f(A[i-1]) od:
    seq(A[i],i=1..100); # Robert Israel, Jan 06 2023
  • Mathematica
    a[1] = 2; a[2] = 3; a[n_] := a[n] = For[p = NextPrime[a[n-1]], True, p = NextPrime[p], If[JacobiSymbol[p, a[n-1]] == 1, Return[p]]];
    a /@ Range[55] (* Jean-François Alcover, Dec 28 2019 *)
    lpqr[n_]:=Module[{p=NextPrime[n]},While[JacobiSymbol[p,n]==-1,p=NextPrime[p]];p]; Join[{2},NestList[lpqr,3,60]] (* Harvey P. Dale, Dec 30 2024 *)

Extensions

Name corrected by Robert Israel, Jan 06 2023