cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000429 Number of n-node rooted trees of height 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 8, 43, 188, 728, 2593, 8706, 27961, 86802, 262348, 776126, 2256418, 6466614, 18311915, 51334232, 142673720, 393611872, 1078955836, 2941029334, 7977065816, 21541492856, 57942770689, 155304829763, 414934057486
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column h=8 of A034781.

Programs

  • Maple
    For Maple program see link in A000235.
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1 || k < 1, 0, Sum[ Binomial[b[i - 1, i - 1, k - 1] + j - 1, j]*b[n - i*j, i - 1, k], {j, 0, n/i}]]]; a[n_] := b[n - 1, n - 1, 8] - b[n - 1, n - 1, 7]; Array[a, 40] (* Jean-François Alcover, Feb 08 2016, after Alois P. Heinz in A034781 *)

Formula

A034826 Number of n-node rooted trees of height at most 9.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1841, 4755, 12410, 32558, 85849, 226980, 601373, 1594870, 4232100, 11230771, 29798539, 79034638, 209526631, 555172356, 1470195001, 3891131705, 10292857772, 27212082536, 71905725130, 189911518888
Offset: 0

Views

Author

Keywords

Crossrefs

See A001383 for details.

Programs

  • Maple
    For Maple program see link in A000235.
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: shr:= proc(p) n->`if`(n=0, 1,p(n-1)) end: b[0]:= etr(n->1): for j from 1 to 7 do b[j]:= etr(shr(b[j-1])) od: a:= shr(b[7]): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; shr[p_] = If[# == 0, 1, p[#-1]]&; b[0] = etr[1&]; For[j = 1, j <= 7, j++, b[j] = etr[shr[b[j-1]]]]; a = shr[b[7]]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)

Formula

Take Euler transform of A034825 and shift right. (Christian G. Bower).
Showing 1-2 of 2 results.