A034826 Number of n-node rooted trees of height at most 9.
1, 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1841, 4755, 12410, 32558, 85849, 226980, 601373, 1594870, 4232100, 11230771, 29798539, 79034638, 209526631, 555172356, 1470195001, 3891131705, 10292857772, 27212082536, 71905725130, 189911518888
Offset: 0
Keywords
Links
- N. J. A. Sloane, Table of n, a(n) for n=0..200
- N. J. A. Sloane, Transforms
- Index entries for sequences related to rooted trees
Crossrefs
See A001383 for details.
Programs
-
Maple
For Maple program see link in A000235. with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: shr:= proc(p) n->`if`(n=0, 1,p(n-1)) end: b[0]:= etr(n->1): for j from 1 to 7 do b[j]:= etr(shr(b[j-1])) od: a:= shr(b[7]): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
-
Mathematica
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; shr[p_] = If[# == 0, 1, p[#-1]]&; b[0] = etr[1&]; For[j = 1, j <= 7, j++, b[j] = etr[shr[b[j-1]]]]; a = shr[b[7]]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
Formula
Take Euler transform of A034825 and shift right. (Christian G. Bower).