A034915 Primes of the form p^k - p + 1 for prime p.
3, 7, 31, 43, 79, 127, 157, 241, 337, 727, 1321, 3121, 4423, 6163, 6841, 8191, 19183, 19681, 22651, 26407, 28549, 29761, 37057, 68881, 78121, 113233, 117643, 121453, 130303, 131071, 143263, 208393, 292141, 371281, 375157, 412807, 524287, 527803
Offset: 1
Keywords
Examples
11^3 - 11 + 1 = 1321 is prime, so 1321 is a term.
Links
- Robert Israel, Table of n, a(n) for n = 1..4960
- J. S. McCranie, A study of hyperperfect numbers, J. Int. Seqs. Vol. 3 (2000) #P00.1.3.
Crossrefs
Contains A074268.
Programs
-
Maple
N:= 10^6: # to get all terms <= N Res:= NULL; p:= 1: do p:= nextprime(p); if p^2-p+1>N then break fi; for i from 2 to floor(log[p](N+p-1)) do if isprime(p^i-p+1) then Res:= Res, p^i-p+1 fi od od: sort(convert({Res},list)); # Robert Israel, Mar 20 2018
Comments