A034930 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 8.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 2, 2, 5, 1, 1, 6, 7, 4, 7, 6, 1, 1, 7, 5, 3, 3, 5, 7, 1, 1, 0, 4, 0, 6, 0, 4, 0, 1, 1, 1, 4, 4, 6, 6, 4, 4, 1, 1, 1, 2, 5, 0, 2, 4, 2, 0, 5, 2, 1, 1, 3, 7, 5, 2, 6, 6, 2, 5, 7, 3, 1, 1, 4, 2, 4, 7, 0, 4, 0, 7, 4, 2, 4, 1, 1, 5, 6, 6, 3, 7, 4, 4, 7, 3, 6, 6, 5, 1
Offset: 0
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
- Ilya Gutkovskiy, Illustrations (triangle formed by reading Pascal's triangle mod m)
- James G. Huard, Blair K. Spearman, and Kenneth S. Williams, Pascal's triangle (mod 8), European Journal of Combinatorics 19:1 (1998), pp. 45-62.
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), (this sequence) (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Programs
-
Haskell
a034930 n k = a034930_tabl !! n !! k a034930_row n = a034930_tabl !! n a034930_tabl = iterate (\ws -> zipWith (\u v -> mod (u + v) 8) ([0] ++ ws) (ws ++ [0])) [1] -- Reinhard Zumkeller, Jul 12 2013, Jun 21 2013
-
Mathematica
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 8] (* Robert G. Wilson v, May 26 2004 *)
-
Python
from math import comb, isqrt def A034930(n): g = (m:=isqrt(f:=n+1<<1))-(f<=m*(m+1)) k = n-comb(g+1,2) if k.bit_count()+(g-k).bit_count()-g.bit_count()>2: return 0 def g1(s,w,e): c, d = 1, 0 if len(s) == 0: return c, d a, b = int(s,2), int(w,2) if a>=b: k = comb(a,b)&7 j = (~k & k-1).bit_length() d += j*e k >>= j c = c*pow(k,e,8)&7 else: if int(s[0:1],2)
Chai Wah Wu, Jul 20 2025
Formula
T(n+1,k) = (T(n,k) + T(n,k-1)) mod 8. - Reinhard Zumkeller, Jul 12 2013