cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034931 Triangle read by rows: Pascal's triangle (A007318) mod 4.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 0, 3, 2, 1, 1, 3, 1, 3, 3, 1, 3, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 1, 2, 1, 0, 2, 0, 2, 0, 1, 2, 1, 1, 3, 3, 1, 2, 2, 2, 2, 1, 3, 3, 1, 1, 0, 2, 0, 3, 0, 0, 0, 3, 0, 2, 0, 1, 1, 1, 2, 2, 3, 3, 0, 0, 3, 3, 2, 2, 1, 1
Offset: 0

Views

Author

Keywords

Comments

The number of 3's in row n is given by 2^(A000120(n)-1) if A014081(n) is nonzero, else by 0 [Davis & Webb]. - R. J. Mathar, Jul 28 2017

Examples

			Triangle begins:
                 1
                1 1
               1 2 1
              1 3 3 1
             1 0 2 0 1
            1 1 2 2 1 1
           1 2 3 0 3 2 1
          1 3 1 3 3 1 3 1
         1 0 0 0 2 0 0 0 1
        1 1 0 0 2 2 0 0 1 1
       1 2 1 0 2 0 2 0 1 2 1
      1 3 3 1 2 2 2 2 1 3 3 1
  ...
		

Crossrefs

Cf. A007318, A047999, A083093, A034930, A008975, A034932, A163000 (# 2's), A270438 (# 1's), A249732 (# 0's).
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), (this sequence) (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).

Programs

  • Haskell
    a034931 n k = a034931_tabl !! n !! k
    a034931_row n = a034931_tabl !! n
    a034931_tabl = iterate
       (\ws -> zipWith ((flip mod 4 .) . (+)) ([0] ++ ws) (ws ++ [0])) [1]
    -- Reinhard Zumkeller, Mar 14 2015
    
  • Maple
    A034931 := proc(n,k)
        modp(binomial(n,k),4) ;
    end proc:
    seq(seq(A034931(n,k),k=0..n),n=0..10); # R. J. Mathar, Jul 28 2017
  • Mathematica
    Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 4] (* Robert G. Wilson v, May 26 2004 *)
  • PARI
    C(n, k)=binomial(n, k)%4 \\ Charles R Greathouse IV, Aug 09 2016
    
  • PARI
    f(n,k)=2*(bitand(n-k, k)==0);
    T(n,j)=if(j==0,return(1)); my(k=logint(n,2),K=2^k,K1=K/2,L=n-K); if(LCharles R Greathouse IV, Aug 11 2016
    
  • Python
    from math import isqrt, comb
    def A034931(n):
        g = (m:=isqrt(f:=n+1<<1))-(f<=m*(m+1))
        k = n-comb(g+1,2)
        if k.bit_count()+(g-k).bit_count()-g.bit_count()>1: return 0
        s, c, d = bin(g)[2:], 1, 0
        w = (bin(k)[2:]).zfill(l:=len(s))
        for i in range(0,l-1):
            r, t = s[i:i+2], w[i:i+2]
            if (x:=int(r,2)) < (y:=int(t,2)):
                d += (t[0]>r[0])+(t[1]>r[1])
            else:
                c = c*comb(x,y)&3
        d -= sum(1 for i in range(1,l-1) if w[i]>s[i])
        return (c<Chai Wah Wu, Jul 19 2025

Formula

T(n+1,k) = (T(n,k) + T(n,k-1)) mod 4. - Reinhard Zumkeller, Mar 14 2015