cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034932 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 16.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 4, 15, 6, 1, 1, 7, 5, 3, 3, 5, 7, 1, 1, 8, 12, 8, 6, 8, 12, 8, 1, 1, 9, 4, 4, 14, 14, 4, 4, 9, 1, 1, 10, 13, 8, 2, 12, 2, 8, 13, 10, 1, 1, 11, 7, 5, 10, 14, 14, 10
Offset: 0

Views

Author

Keywords

Comments

T(n+1,k) = (T(n,k) + T(n,k-1)) mod 16. - Reinhard Zumkeller, Mar 14 2015

Examples

			Triangle begins:
                        1
                      1   1
                    1   2   1
                  1   3   3   1
                1   4   6   4   1
              1   5  10  10   5   1
            1   6  15   4  15   6   1
          1   7   5   3   3   5   7   1
        1   8  12   8   6   8  12   8   1
      1   9   4   4  14  14   4   4   9   1
    1  10  13   8   2  12   2   8  13  10   1
  1  11   7   5  10  14  14  10   5   7  11   1
.
Written in hexadecimal (with a=10, b=11, ..., f=15), rows 0..32 are
.
                                   1
                                  1 1
                                 1 2 1
                                1 3 3 1
                               1 4 6 4 1
                              1 5 a a 5 1
                             1 6 f 4 f 6 1
                            1 7 5 3 3 5 7 1
                           1 8 c 8 6 8 c 8 1
                          1 9 4 4 e e 4 4 9 1
                         1 a d 8 2 c 2 8 d a 1
                        1 b 7 5 a e e a 5 7 b 1
                       1 c 2 c f 8 c 8 f c 2 c 1
                      1 d e e b 7 4 4 7 b e e d 1
                     1 e b c 9 2 b 8 b 2 9 c b e 1
                    1 f 9 7 5 b d 3 3 d b 5 7 9 f 1
                   1 0 8 0 c 0 8 0 6 0 8 0 c 0 8 0 1
                  1 1 8 8 c c 8 8 6 6 8 8 c c 8 8 1 1
                 1 2 9 0 4 8 4 0 e c e 0 4 8 4 0 9 2 1
                1 3 b 9 4 c c 4 e a a e 4 c c 4 9 b 3 1
               1 4 e 4 d 0 8 0 2 8 4 8 2 0 8 0 d 4 e 4 1
              1 5 2 2 1 d 8 8 2 a c c a 2 8 8 d 1 2 2 5 1
             1 6 7 4 3 e 5 0 a c 6 8 6 c a 0 5 e 3 4 7 6 1
            1 7 d b 7 1 3 5 a 6 2 e e 2 6 a 5 3 1 7 b d 7 1
           1 8 4 8 2 8 4 8 f 0 8 0 c 0 8 0 f 8 4 8 2 8 4 8 1
          1 9 c c a a c c 7 f 8 8 c c 8 8 f 7 c c a a c c 9 1
         1 a 5 8 6 4 6 8 3 6 7 0 4 8 4 0 7 6 3 8 6 4 6 8 5 a 1
        1 b f d e a a e b 9 d 7 4 c c 4 7 d 9 b e a a e d f b 1
       1 c a c b 8 4 8 9 4 6 4 b 0 8 0 b 4 6 4 9 8 4 8 b c a c 1
      1 d 6 6 7 3 c c 1 d a a f b 8 8 b f a a d 1 c c 3 7 6 6 d 1
     1 e 3 c d a f 8 d e 7 4 9 a 3 0 3 a 9 4 7 e d 8 f a d c 3 e 1
    1 f 1 f 9 7 9 7 5 b 5 b d 3 d 3 3 d 3 d b 5 b 5 7 9 7 9 f 1 f 1
   1 0 0 0 8 0 0 0 c 0 0 0 8 0 0 0 6 0 0 0 8 0 0 0 c 0 0 0 8 0 0 0 1
		

Crossrefs

Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), (this sequence) (m = 16).

Programs

  • Haskell
    a034932 n k = a034932_tabl !! n !! k
    a034932_row n = a034932_tabl !! n
    a034932_tabl = iterate
       (\ws -> zipWith ((flip mod 16 .) . (+)) ([0] ++ ws) (ws ++ [0])) [1]
    -- Reinhard Zumkeller, Mar 14 2015
    
  • Mathematica
    Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 16] (* Robert G. Wilson v, May 26 2004 *)
  • Python
    from math import comb, isqrt
    def A034932(n):
        g = (m:=isqrt(f:=n+1<<1))-(f<=m*(m+1))
        k = n-comb(g+1,2)
        if k.bit_count()+(g-k).bit_count()-g.bit_count()>3: return 0
        def g1(s,w,e):
            c, d = 1, 0
            if len(s) == 0: return c, d
            a, b = int(s,2), int(w,2)
            if a>=b:
                k = comb(a,b)&15
                j = (~k & k-1).bit_length()
                d += j*e
                k >>= j
                c = c*pow(k,e,16)&15
            else:
                if int(s[0:1],2)Chai Wah Wu, Jul 20 2025

Formula

T(i, j) = binomial(i, j) mod 16.