cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034933 Expansion of theta_3(q)^2 * theta_3(q^3) in powers of q.

Original entry on oeis.org

1, 4, 4, 2, 12, 16, 0, 8, 20, 4, 8, 8, 10, 32, 8, 0, 28, 24, 4, 8, 32, 16, 16, 16, 0, 28, 8, 2, 40, 48, 8, 8, 52, 0, 8, 16, 12, 64, 16, 8, 40, 24, 0, 24, 40, 16, 16, 16, 26, 28, 20, 0, 64, 80, 0, 16, 40, 24, 24, 8, 0, 64, 24, 8, 60, 48, 8, 24, 72, 0, 16, 16, 20, 48, 24, 10, 40, 96
Offset: 0

Views

Author

Keywords

Comments

a(n)=0 if n == 6*9^k (mod 9^(k+1)) for some k>=0. - Robert Israel, Aug 11 2019

Examples

			1 + 4*q + 4*q^2 + 2*q^3 + 12*q^4 + 16*q^5 + 8*q^7 + 20*q^8 + 4*q^9 +...
		

Programs

  • Maple
    S:= series(JacobiTheta3(0,q)^2*JacobiTheta3(0,q^3),q,101):
    seq(coeff(S,q,i),i=0..100); # Robert Israel, Aug 11 2019
  • Mathematica
    CoefficientList[EllipticTheta[3, 0, q]^2*EllipticTheta[3, 0, q^3]+O[q]^80, q] (* Jean-François Alcover, Nov 27 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, qfrep( [ 1, 0, 0; 0, 1, 0; 0, 0, 3], n)[n] * 2)} /* Michael Somos, Sep 21 2005 */

Formula

Number of integer solutions to x^2 + y^2 + 3*z^2 = n.
Euler transform of period 12 sequence [4, -6, 6, -2, 4, -9, 4, -2, 6, -6, 4, -3, ...]. - Michael Somos, Sep 21 2005
Expansion of (eta(q^2)^2 * eta(q^6))^5 / (eta(q)^2 * eta(q^3) * eta(q^4)^2 * eta(q^12))^2 in power of q. - Michael Somos, Sep 21 2005
G.f.: theta_3(q)^2 * theta_3(q^3).