cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035010 Number of prime binary rooted trees with n external nodes.

Original entry on oeis.org

1, 2, 4, 14, 38, 132, 420, 1426, 4834, 16796, 58688, 208012, 742636, 2674384, 9693976, 35357670, 129641774, 477638700, 1767253368, 6564119892, 24466233428, 91482563640, 343059494120, 1289904147128, 4861945985428, 18367353066440, 69533549429280, 263747951750360
Offset: 2

Views

Author

Bernard Amerlynck (B.Amerlynck(AT)ulg.ac.be)

Keywords

Comments

If a,b are binary trees, a.b is equal to tree b where a copy of a is put on each of b's external nodes. This is non-commutative but associative. A binary tree a is prime if it is different from the 1 node tree and if a=b.c implies that b or c is equal to the 1 node tree.

Examples

			a(4) = C(3) - Sum_{d_1*d_2=4} a(d_1)*C(d_2-1) = 5 - a(2)*C(1) = 5 - 1 = 4.
		

References

  • B. Amerlynck, Itérées d'exponentielles: aspects combinatoires et arithmétiques, Mémoire de licence, Univ. Libre de Bruxelles (1998).

Crossrefs

Cf. A035102.

Programs

  • Maple
    with(numtheory):
    C:= n-> binomial(2*n, n)/(n+1):
    a:= proc(n) option remember; C(n-1)
          -add(a(d)*C(n/d-1), d=divisors(n) minus {1, n})
        end:
    seq(a(n), n=2..30);  # Alois P. Heinz, Feb 12 2015
  • Mathematica
    a[n_] := a[n] = CatalanNumber[n-1] - Sum[If[Divisible[n, d1], d2 = n/d1; a[d1]*CatalanNumber[d2-1], 0], {d1, 2, n-1}]; a[2] = 1; Table[a[n], {n, 2, 26}] (* Jean-François Alcover, Oct 25 2011, after formula *)

Formula

a(n) = C(n-1) - Sum_{d_1*d_2=n and 1 < d_1 < n} a(d_1)*C(d_2-1) where C(n) is the n-th Catalan number (A000108).
a(n) ~ 2^(2*n - 2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 28 2024

Extensions

More terms from Christian G. Bower