A035010 Number of prime binary rooted trees with n external nodes.
1, 2, 4, 14, 38, 132, 420, 1426, 4834, 16796, 58688, 208012, 742636, 2674384, 9693976, 35357670, 129641774, 477638700, 1767253368, 6564119892, 24466233428, 91482563640, 343059494120, 1289904147128, 4861945985428, 18367353066440, 69533549429280, 263747951750360
Offset: 2
Examples
a(4) = C(3) - Sum_{d_1*d_2=4} a(d_1)*C(d_2-1) = 5 - a(2)*C(1) = 5 - 1 = 4.
References
- B. Amerlynck, Itérées d'exponentielles: aspects combinatoires et arithmétiques, Mémoire de licence, Univ. Libre de Bruxelles (1998).
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..1000
- V. Blondel, Une famille d'opérations sur les arbres binaires, [A family of operations on binary trees], Comptes Rendus de l'Academie des Sciences de Paris - Serie I, 321, 491-494, 1995.
- V. Blondel, Structured numbers: properties of a hierarchy of operations on binary trees, Acta Informatica, vol. 35 (1998), pp. 1-15.
- Carles Cardó, Arithmetic and k-maximality of the cyclic free magma, Algebra universalis (2019) 80:35.
- Index entries for sequences related to rooted trees
Crossrefs
Cf. A035102.
Programs
-
Maple
with(numtheory): C:= n-> binomial(2*n, n)/(n+1): a:= proc(n) option remember; C(n-1) -add(a(d)*C(n/d-1), d=divisors(n) minus {1, n}) end: seq(a(n), n=2..30); # Alois P. Heinz, Feb 12 2015
-
Mathematica
a[n_] := a[n] = CatalanNumber[n-1] - Sum[If[Divisible[n, d1], d2 = n/d1; a[d1]*CatalanNumber[d2-1], 0], {d1, 2, n-1}]; a[2] = 1; Table[a[n], {n, 2, 26}] (* Jean-François Alcover, Oct 25 2011, after formula *)
Formula
a(n) = C(n-1) - Sum_{d_1*d_2=n and 1 < d_1 < n} a(d_1)*C(d_2-1) where C(n) is the n-th Catalan number (A000108).
a(n) ~ 2^(2*n - 2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 28 2024
Extensions
More terms from Christian G. Bower
Comments