A035045 Inverse binomial transform of A002054.
1, 4, 12, 35, 101, 291, 839, 2423, 7011, 20326, 59038, 171777, 500603, 1461032, 4269828, 12493857, 36599403, 107325540, 315027276, 925501857, 2721208599, 8007114171, 23577440439, 69470880381, 204821487269, 604223501426, 1783419354954, 5266582196407, 15560042628205
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A005774.
Programs
-
Mathematica
Table[Sum[(-1)^(n-k)*Binomial[n,k]*Binomial[2k+3,k],{k,0,n}],{n,0,22}] (* Vaclav Kotesovec, Oct 08 2012 *)
-
PARI
a(n)=sum(k=0,n,(-1)^(n-k)*binomial(n,k)*binomial(2*k+3,k) ); \\ Joerg Arndt, May 04 2013
Formula
Recurrence: (n+3)*(3*n-1)*a(n) = (6*n^2+19*n+7)*a(n-1) + 3*(n-1)*(3*n+2)*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 4*3^(n+1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 08 2012