cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035045 Inverse binomial transform of A002054.

Original entry on oeis.org

1, 4, 12, 35, 101, 291, 839, 2423, 7011, 20326, 59038, 171777, 500603, 1461032, 4269828, 12493857, 36599403, 107325540, 315027276, 925501857, 2721208599, 8007114171, 23577440439, 69470880381, 204821487269, 604223501426, 1783419354954, 5266582196407, 15560042628205
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A005774.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[n,k]*Binomial[2k+3,k],{k,0,n}],{n,0,22}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • PARI
    a(n)=sum(k=0,n,(-1)^(n-k)*binomial(n,k)*binomial(2*k+3,k) ); \\ Joerg Arndt, May 04 2013

Formula

Recurrence: (n+3)*(3*n-1)*a(n) = (6*n^2+19*n+7)*a(n-1) + 3*(n-1)*(3*n+2)*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 4*3^(n+1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 08 2012