cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035054 Number of forests of identical trees.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 9, 12, 27, 49, 111, 236, 562, 1302, 3172, 7746, 19347, 48630, 123923, 317956, 823178, 2144518, 5623993, 14828075, 39300482, 104636894, 279794753, 751065509, 2023446206, 5469566586, 14830879661, 40330829031, 109972429568, 300628862717
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

Crossrefs

Cf. A005195.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<=1, n,
          (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    g:= proc(n) option remember; local k; `if`(n=0, 1, b(n)-
          (add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2)
        end:
    a:= n-> `if`(n=0, 1, add(g(d), d=divisors(n))):
    seq(a(n), n=0..35);  # Alois P. Heinz, May 18 2013
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n-1}]/(n-1)]; g[n_] := g[n] = If[n==0, 1, b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[Mod[n, 2]==0, b[n/2], 0])/2]; a[n_] := If[n==0, 1, Sum[ g[d], {d, Divisors[n]}]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)

Formula

Inverse Moebius transform of A000055.
a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.9557652856519949747148..., c = A086308 = 0.53494960614230701455... . - Vaclav Kotesovec, Aug 25 2014