A035054 Number of forests of identical trees.
1, 1, 2, 2, 4, 4, 9, 12, 27, 49, 111, 236, 562, 1302, 3172, 7746, 19347, 48630, 123923, 317956, 823178, 2144518, 5623993, 14828075, 39300482, 104636894, 279794753, 751065509, 2023446206, 5469566586, 14830879661, 40330829031, 109972429568, 300628862717
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..750
- N. J. A. Sloane, Transforms
Crossrefs
Cf. A005195.
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1)) end: g:= proc(n) option remember; local k; `if`(n=0, 1, b(n)- (add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2) end: a:= n-> `if`(n=0, 1, add(g(d), d=divisors(n))): seq(a(n), n=0..35); # Alois P. Heinz, May 18 2013
-
Mathematica
b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n-1}]/(n-1)]; g[n_] := g[n] = If[n==0, 1, b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[Mod[n, 2]==0, b[n/2], 0])/2]; a[n_] := If[n==0, 1, Sum[ g[d], {d, Divisors[n]}]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)
Formula
Inverse Moebius transform of A000055.
a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.9557652856519949747148..., c = A086308 = 0.53494960614230701455... . - Vaclav Kotesovec, Aug 25 2014