A035080 Number of asymmetric connected graphs where every block is a complete graph.
1, 1, 0, 0, 0, 0, 1, 3, 7, 21, 60, 168, 472, 1344, 3843, 11104, 32305, 94734, 279708, 831401, 2485877, 7474667, 22589771, 68594611, 209198103, 640591332, 1968920180, 6072766832, 18791062733, 58321579888, 181524367875, 566488767763, 1772261945866, 5557515157647
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..600
Programs
-
Maple
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(b((i-1)$2), j)*g(n-i*j, i-1), j=0..n/i))) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(g(i$2), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> b((n-1)$2)+g(n$2)-add(b((i-1)$2)*g((n-i)$2), i=0..n): seq(a(n), n=0..40); # Alois P. Heinz, May 20 2013
-
Mathematica
g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[b[i-1, i-1], j]*g[n-i*j, i-1], {j, 0, n/i}]]]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i < 1, 0, Sum[Binomial[g[i, i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n-1, n-1] + g[n, n] - Sum[b[i-1, i-1]*g[n-i, n-i], {i, 0, n}]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n / n^(5/2), where d = 3.38201646602027280742981874... (same as for A007561), c = 0.12430588691278777480105... . - Vaclav Kotesovec, Sep 10 2014