cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035143 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -47.

Original entry on oeis.org

1, 2, 2, 3, 0, 4, 2, 4, 3, 0, 0, 6, 0, 4, 0, 5, 2, 6, 0, 0, 4, 0, 0, 8, 1, 0, 4, 6, 0, 0, 0, 6, 0, 4, 0, 9, 2, 0, 0, 0, 0, 8, 0, 0, 0, 0, 1, 10, 3, 2, 4, 0, 2, 8, 0, 8, 0, 0, 2, 0, 2, 0, 6, 7, 0, 0, 0, 6, 0, 0, 2, 12, 0, 4, 2, 0, 0, 0, 2, 0, 5
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[-47, #] &]];
    Table[a[n], {n, 1, 100}] (* G. C. Greubel, Apr 25 2018 *)
  • PARI
    my(m=-47); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(-47, d)); \\ Amiram Eldar, Nov 18 2023

Formula

From Amiram Eldar, Nov 18 2023: (Start)
a(n) = Sum_{d|n} Kronecker(-47, d).
Multiplicative with a(47^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(-47, p) = -1, and a(p^e) = e+1 if Kronecker(-47, p) = 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5*Pi/sqrt(47) = 2.291241... . (End)